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p-spin-interaction spin-glass models:
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Equation for dynamic correlation functions
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In the ergodic phase
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For wuse below we note that in the domain,
¢(t)=C(t)/C(0) satisfies the equation
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with ¢(1 =0)=1, vy=F,[; and the nonlinear coupling
given by A=ur; ",



Solution near the glass transition point Tg

Assume that C(0) is continuous across the glass transition

gea =g = lim C(1) . Assuming that C(w) has a time-persistent part with a
1 — o nonzero falue of g and a decaying part, Egs. (3.1) yield
1
g = C(t=0 hﬂ--l?p *) This equation leads to a physical g at a critical tempera-
— — - ture given by Eq. (3.1¢) and p—p,
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The critical EA order parameter is
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Equation for the exponent O is: 201 o — _
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Critical slowing down:
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Finally, we discuss the assumption that C(t =0) is
continuous at T,. This assumption seems physically well
motivated for any glass transition.®> Our discussion
here, however, will lead to an interesting paradox which
will be clarified in Sec. IV of this paper. We first argue
that Eqs. (3.1) and (2.4) naively lead to a complete
specification of the problem and that no assumption on
C(t=0) is needed. Assuming C(t— = )=g, Eq. (2.4)
yields

C(r=0)= 1 —+q

Fo+ug? ™

g1
Effective dynamic equations lead to 9= &4 p—
(Fo+1q

!}2 )
The above 2 Egs. are inconsistent with continuous C(0) at Tg and with Eq. (*)

Resolution of the paradox: C(0) is continuous, but FDT is broken at Tg



Static RSB solution
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We will see that solution is provided by 1-step RSB —
as we know it from E.Gardner paper of 1985

Here we present the solution in term of Parisi functions
g(x) and A(x) and will see that solution is of the form
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The saddle-point (SP) equation 8F /8g(x)=0 yields,
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An equation for C follows from maximizing Eq. (4.5)
with respect to A;. The equilibrium critical temperature
T, is obtained when these equations first have a physical
solution, ¢ =0, 1—X = 0. At critically, x=1, and the
self-consistent one-loop equation for C(T =T,)=C, is
given by

CEEE'GC:—F—'={rﬂ—pcﬂf_1+12ucc:|"l
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The critical parameters, to O(€) are
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To O(t=1-T/T,)
E.Gardner:

X~1—t/€, The critical temperature is again at x, =1 and is given by

(T,)? ~ 1+ (111 (%E) — 1) T.=(3e) (1 - Le).



Compare temperatures of dynamic and static transitions

Dynamic transition: Static RSB transition:

€ 1 , 3 3
Tg‘“"l—'_ﬁ(lnf_i) Tgm1+§(lll(§f>—1)

Dynamic transition occurs at higher temperature !

It seems to be a general feature of 1-step RSB problems
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the free Energy he:ng maximized at T, hy the value X

at its physical endpoint ¥=1 in the temperature
T, >T >T,. The variational equation for X given by
Eq. (4.6b) 1s not a relevant equation if F as a function of
X 1s not maximized in the physical region, 0 <X < 1. We

Technically, the freezing predicted by the dynamical
theory is easy to understand using local stability theory.
For T > T, the dynamical equation for ¢ =C(t— )
has the stable trivial solutions and unphysical and unsta-
ble complex solutions. At T, two of the complex solu-
tions become degenerate real solutions. At T, there are
three real critical points x; (i =1,2,3) of the dynamlcal
equation that satisfy x, _E.'rﬁ:,::;: <x3;=q, <Clt =0).
The fixed points x; and x;=gq, are stable and x, is an
unstable fixed point. We then have a situation where
Cl{t— o )=0 and C(t-—+ o )=q, are both stable solu-
tions, but where it is impossible to reach C{t— o )=0
due to the intervening unstable fixed point. The only
possible conclusion is that the system freezes into a SG
state because it cannot reach the equilibrium state
defined by C(f— 0 )=0. It is interesting to point out
that in the SK model the situation is quite different. The
dynamical equation has only two fixed points and at T,
there is an exchange of stability between the fixed points.



Continuous transformation of 1-step RSB to full Parisi RSB

Slow cooling dynamics of the Ising p-spin interaction spin-glass model

D. M. Kagan and M. V. Feigelman  Zh. Eksp. Teor. Fiz. 109, 20942114 (June 1996)

H=— 2 Ji .

I<ij<..<i,=N 7P

N
fﬂ'il'“ﬂ'ip—bz ;.

i=1
External field b reintroduces effectively pair-wise spin-spin coupling

Phase diagram. Thin lines—continuous transition, thick lines—

discontinuous transition.

We assume Glauber dynamics for o;: the probability for o;
to change its sign during unit time is

T w{(g1,0eesCTyeeesy)— (015, — 0, ON)}




Relation to model of glass transition in a liquid

Dynamical model of the liquid-glass transition
E. Leutheusser PHYSICALREVIEWA 29 2765 (1984)

Let us consider the following nonlinear equation of
motion for a damped oscillator:

. . f .
¢{I}+Tfl}iﬂ+ﬂ§¢{ﬂ+4hﬂ§fﬂdr¢ziﬂ¢[r—TJ=D (1)
with the initial condition ®(t =0)=1, ®(t =0)=0, where

the n%cillatnry coordinate ®(¢) is tfmught to re[.;resent

the density correlation function of a classical fluid at a certain wave number.

by introducing Laplace transforms
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Critical behavior at A =1

1 D, (2)={C(2)+[€*2)—8% (2)/2]'/*} /2
C(z)=iy+.L [ D)} .

a—1
&)~
ﬂ”{ ] ' where @=0.395 is a solution of I'(1—2a)=2I"%1—a),

€ (z)~zg* ! j The same exponent as for
pP>2 spin glass model

Above T: A <1  where s =€'/** is a critical frequency, a=0.395,
D,(z)=z%"'d(z/s), The relaxation rate & vanishes as

C(z)=z*"c(z/s) §—slta _li+a)2a

the zero-frequency limit of the viscosity D~e*, u=(a+1)/2a=1.765



Indeed, compare equations of structure glass
model and p-spin model:

.a . i .
D(1) +yD(1)+ Q3D(1) + 4103 fﬂmﬁwbu —7)=0

vo '@(t)+ 1)+ A fﬂxd;”ﬁ,p Nt —t,)d(t,)=0

Coincide for p=3'!



The spherical p-spin interaction spin-glass model

The dynamics Z. Phys. B 92, 257-271 (1993)

A. Crisanti’, H. Horner?, H.-J. Sommers?

Exact dynamic equations
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Possible Glassiness in a Periodic Long-Range Josephson Array

P. Chandra, L. loffe, D. Sherrington, Phys. Rev. Lett. 75, 713 (1995)
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S(m) = Sy — |m|* — E'W + O(Im|®),

( 0 _g) Jix = (Jo/N)expQRmia jk/N)

At high temperatures Fo{my} ~— 1/T small

diagonalized by a Fourier transformation to

ysinfre(j — k)]
ma(j— k) my (JI),

_Jb
@

Fity., = jleimali—k
VI ik = Joe O(p)QRma — p)



_Jo —~0(p)oQ2ma — p).

Therefore the largest eigenvalue of j 1S Amax = Jo/J/a;
the corresponding eigenfunctions associated with one set
of parallel wires are plane waves with momenta in the
interval 0 = p = 27ra so that the degeneracy of this
eigenvalue is a N [8].

Therefore, in the absence of feedback effects, the

transition occurs at T.p = Jw’ﬁx'
We use the locator expansion [11] to determine the

leading order contributions in m; to Fo{my}, it is based Vo=
on the expression for susceptibility

2 ) 1 ) =yl A (A 0
am: = (¥ }.t;;lj A— JA-VJH) T ’ 0 A
My Om \_ /i

e

xii = = |m;|»)/T Consider first m=0 limit of this Equation
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Solution in 2™ order of F(m): A — J2/Aa A

~|—

1% — order phase transition
IS expected and this is

demonstrated for o = 1

A(T)

Dynamic treatment is
More transparent




Glass Formation in a Periodic Long-Range Josephson Array

P. Chandra,! M. V. Feigelman,2 and L. B. Ioffe’® Phys. Rev. Lett. 76, 4805 (1996)

: HH +V .
i == 2V GOG) = 2180 )3
Goe I U I B
YOG, - BAUTNG, -
Leading diagrams for G
B O(am — |pl) a(lpl — crﬂ')
Golp) = G;' — (BJ)?G, /] a N G :

g

=
X

The static limit (@ = 0) of I"G_' coincides with the
locator, A(T'), discussed plewmlsh [3]; in the absence of
Onsager feedback terms, Gy ' = 1. Therefore we see in

- 1 . Subleading diagrams for G
Gy (@) = BA(T) — iwTp

= B@A ~ Ji/ad) =20 = (T = To)/To



Retardation in the Onsager reaction terms:

—o— —e— Ge) = [Gr(e) ™ = 3]
o -
: : | — >, = %riff)?{;}c";(;} (e'®' — 1)dt

Since we would like to detect a dynamical instability,
we only consider the long-time behavior of the response

function, i.e., o f piwt (dm)
— ¥
a—23, +iot)\27
a closed form equation
fxf)(ﬂe“‘”dr _ ( cr) 27y, + [, D3 (t)e'dt p=4 SG model
0 | ala— iw2r, + [, D3(t)eivtdt]
which results in the asymptotic behavior TR = E#TJ:-( dc )F
G (1) 2o b 20 4/ a. \a — dc
= e : = ——e -
Jatg 3a r = 1.765:



the long-time part of D(¢) shown in (15) be

comes constant, ¢ = +/2(a/3)"/*, indicating a jump in

the Edwards-Anderson order. . 2 cx S
D) — =g A

a4, = \/E(-:rﬂﬁ)yﬂ'. i
Major conclusions:

1. 1-step RSB transition is preceded by dynamic
transition at higher Tg

2. A number of different models lead to just the same
critical dynamic behavior that is model- independent
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