Spin glass dynamics below T

Chapter 2.3 In “Spin Glasses and related problems”,
Vik.Dotsenko, M. Feigel'man and L.loffe (1990)

1. Dynamic approach to SK spin glass - reminder

2. General equation for Slow Cooling (L.loffe,
Phys.Rev. B38, 5181, 1988, also ZhETF 93, 343, 1987)

3. Solution of the SC eqgs near T , comparison with
the RSB results

4. Simplest non-trivial example of history-
dependent non-ergodic response



Relaxational dynamics of the Edwards-Anderson model and the mean-field
theory of spin-glasses

H. Sompolinsky & Annette Zippelius Phys. Rev. B 25, 6860 (1982)
Order parameter: gEA = :Hm [(S;(0)S;(2)) ], .

The EA Hamiltonian is H=— 3 J;S;S;, spin variables S; take the values +1
(ij)

_ T2v—1/2
Distribution of random J, PUJyy)= 2wz /J ")
X expl —z (J;; —Jo/2)* /20 *]
Z is the number of nearest neighbours

We consider here a soft-spin version of the EA
model defined by

BH = = {2} (rody —2BJj)0i0;
i

+u Y oi+ 3 hio;,, B=1/T.



To study the relaxational dynamics of spin
glasses, we propose a simple phenomenological
Langevin equation,
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Objects of interest: pair spin correlation function

E;_fl:f —t")= {ﬂ'r'{ﬂﬂ'j“’} } The FDT reads in the present context
and the linear-response function Cijlw) = ;ImG,-_,-Em]
Gt —t')= a;;"{[;]: , t>t1 and
J Cii(t =0)=G;j(0=0)
ReG ()=~ [ do' ImGy(0)
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The term V, whlacllg&ansﬁ from the functional and ensures the proper normalization of Z,
bian, i b
an, is given by Z| :;.ir:fi=ff= =1
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_ Aﬁ"ﬂmlnz ={1‘3[(a] cee g (t,)),
8,(71) - - - Bl (ty) |27 0
Response function: (i5;(t)o () =Gyt —t')  (t>1)



Averaging over J, s possible since Z=1
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here we use the property J;; =Jj;.

Lofo,6)= fr:z'rz[fﬁ',{—I‘[,_la,af-rruﬂ',-—4ucr,3-—h,-+il"{flf”r;}+ Vio} +il:6;+10:]
Decoupling of the 4-th order terms:
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where K is the short-range matrix (Kj;=1 if /,j are nearest neighbors and zero otherwise), and
o~ o~ 1 ¥ T . ¥ ] p
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(We have assumed Jo=0.) + Q55,16 (o; (1) + Q4(1,61id (1) (1)] .



j'd: dt'[ C(t —1")i6; ()i, (t")+2G (t —1")i6,(t)oi(t')]

Clit—t")=[{o;(o;(t))], ,
Gt —t")=[(ig;(t")o; (1)) ];

Lofo,6}= [ dt 3, [i8,(—T5'8,0; —roo; —4uci—h; +iTg '6,)+ V{o} +ilio;+10;]

The new effective bare propagator is and the effective noise ¢ is a Gaussian random

i . ~n variable with width
G[l [fﬂ}=rﬂ—£mr[l _ﬁZJ Glw) <¢f{ﬂ?}¢r‘{m'}}= [2[‘61+ﬁ1f1€{m}]ﬁ{m+m']
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DYNAMICS FOR T >T,

e 1 3G () o .
Key quantity: (w)=i ™ Effective kinetic coefficient
The dynamic-response function obeys a Dyson
equation

Gy (w)=rg—iolTy ' =BG (w)

G Nw) =G5 (w)+2w),

/BE /
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the nonlinear coupling u.

'Y= 1 2}.1;2 }
—P @) - random exchange
S d
assume that ailm 2(0)=—-~Im2 is finite (it will be proven later)
- o w w=0
Ty ' +Im S—E[m | -
Then p-l(u=0)= w . diverges at T.=JG(0)
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Dynamics below T
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A = ] Lumﬂf 7,(0),
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Averaging over random J + time-dependence of T



A=ﬁlﬂ+s—‘1=ﬂr+ W,

1
A== 55| @t 4t 3 6.0050)0,00,0)
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+ a{Da;(t')a; (¢ e, (O)(B),(8]),,

Mean-field approximation:

1
My = = j dr dr’ E [C(, £2i6;i6,iG,(¢') + 2G (1, £)i6,(D)a (D] % (8J), (BJ]),..
The equivalent problem: Langevin equation with noise

ry'a? = - 22 4 (81), | dr' G 010w, + 50,
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Fast and slow response and correlations

FDT:

G, t') = Alt, ') + G, -¢), G.it—1) = C{t—1")

cit, 1) = glt, t) + Clt—1),
Slow parts Fast parts

I + 0L/ dw

-1 -4 — 1 5 f— —
riw =189 6w = Gilw + B T = TGy
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Slow part: itl[r_uducc an auxiliary slowly varying ﬁaiusaiaﬂ variable ?I[.r}“

Variance: Z(ODZ(')y = (BJI),q(t, ' NBT),

— = - 'ﬁ'HIJ = r
I o= [ - = + .BJJ de’ G,/ —ta(r') + E(!}J + H(§)

(S(NEE)) = 2T '6(t—1') + (BN)D,(t-1),

H(r) = (8J), | dt’ A(, e WBT), + Z{1).



m::;ﬂn_x now on, we suppose that the variation of the external para-
rs 1s very slow, so that local equilibrium is achieved lon g before the

external parameters vary sufficiently, and the equation (2.3.13) for the
fast relaxation can be solved ignoring the variation of the effective field
H{(t). The presence of a slow part A(¢, ') of the response function
means that the field produces nonzero magnetization long after it has
been switched of f (¢ —¢' = Iy 'y, so we can say that the magnetic field
can be frozen into the system.

The perturbation theory in u shows that the *“*fast’’ parts o COI-
relators obey the FDT to all orders in 1, so we suppose that even below
T, the FDT (2.3.10) holds for the *‘fast’ parts of the correlators. The
FDT (2.3.10) implies that at a given value of the effective field H (1)

G(w=0) = ¢e® — {aWo(W' V| py»rsr =1 —m;, m, = o).

Here and below in this section we denote the average over the fast
noise £(£) by {. . .) and that over the slow noise Z(r) by [. . .], and we
consider the Ising normalization of spin lengths: ¢{¢°) = 1. From
(2.3.15), we conclude that the reaction to the slow effective field H(7)

m, = tanh { H(t,) + (1)}



Fast dynamics on top of frozen magnetization

- = r—l __ai
o T+ i G Hw) 3[E(w) Gh(@)]z/ 9 =) 0 Tz~
e [ = (BIVICH); A6
Stability condition: 1 — (BJYGF(0)]; = 0.
- | .}rrl
via EDT | — 2[m?]; + [m])z < e In fact it is equality !
Fast response: Exponent is determined from:
G _.--... r 4w coth 7v  [2m(1 —m)?],
(W) ~ w” T o

(Sompolinsky-Zippelius 1982)



Equations for slow response

H®) = (B]), ] dr' A(t, t)BI),m (") + Z(?).

_ At
self-consistency equations Az, 1,) = dm(t )/dh(t) L —t,>> I,
am,/3(Bh,) = 1—m? m, = tanh {H(t,) + h(1)}.

ﬂ(f], fz} P [(l = mz)r,(ﬁJ):,ﬁ(rh !1)(18J)r;(1 == mz)rz

+(B)),(1 —m?), j dra(t,, 0)(BJ),A(, fz)J -

Z

q(t, ') = [m(@Om(t')];.

Basic equations for slow cooling description of the SK spin glass

e ol W ‘rJ.'\.fl.'\.l',

for any nonzero solution A(z,, f;), the Clo;ldﬁiftion [(i-;rﬁl')‘{z,]z = T4/ 0°
must be fulfilled, which is exactly the condition for marginal stability



Explicit form of SC Eqs near T_

In the vicinity of 7.the equations of state are substantially simplified.
First, we note that the exact condition for marginal stability de!:f::rmlruesE
g. = [m?* to second order in 7 (we use [m*] =~ 3¢* + Ol):g=r+r7

In the leading order over T we find equation for anomalous part of response:

A(t,, IE){ZQE(IH 35} TIUJ) =E Tl(tz)} + !df Az, DAL, 1). =0

The equation for g(¢,, ,) follows from its definition, i.e. g(, t,) =
[m(t,)m(1,)] and (2.3.16). Keeping only the leading terms, we get

q{fli "2)[% qz(r]’ rﬂ 2 Tz(r‘i} i Tz(ri]j
; ]dr (A, DGt D + Ally DG, D] + hADA(E) = O

Reparametrization invariance: t = f(0)

Ay, ) — A(fy, &) = A, B) de,/dt,



Solution for monotonic cooling

In the simplest case of a monotonic decrease of temperature,
7(f) = 1 andh=0

The solution is:

AL 1) = 2= Yy gLt} = Q(r—1t)t' + 6(¢' — Nt

It leads to the result for field-cooled susceptibitiy:

Xpc = (dr“ T,T‘G{r, ') = T-'(l—q(r, N) + | dt’ B, AL t')

Xzre = T j de' G(t, 1) = T-'{1-¢q(t, 0)}. Xpc = Xzee + I3 '7?
= {1 + U(Ti}} ;r;-l




Comparison between SC and RSB approaches

In the leading order over T << 1 the results
for physical guantities coincide

L e i By et

Higher-order terms can also be computed in this approach:
AL, &) = 20 + t'(@~1),
. | 1 Y
q{rl 4 } = & EEI{I—{_‘”L
Using the functions A(z, ') and g, t') from (2.3.30), and the

marginal stability condition (2.3.18), we get the Edwards-Anderson

order paran%eter qea = q(t, 1) for a state resulting from a slow cooling
process to high accuracy in r:

s Qen = Gy = 2.37°

Gm:T+TI—T3+—T4—17.2T5+O(r5) .
3 discrepancy



Internal energy in SC and RSB:

U = --] Z (JyS:iS;» =-— i{i — g, H+2T [ de' At t)gq(t, I')ﬁ(!'}l.
2 = 2T )

Marginal stability condition helps to calculate the above integral to high orderin T

1 2 13
U-—-——(l—‘rl—l——3 TE+T4—?TS)

This is slightly above the internal energy of the equilibrium state:
BB g 6
u - UE‘-EI = ?Tj g & O{T )

SQ process results in a non-equilibrium state. However, probably
this state is most relevant in terms of physical observables



How can we see hierarchical nature of SG states ?

9, =0 . . - -
L /"T"x Consider non-monotonic variation of temperature
,ff | Mx"\
P \\K
e T,
1 ""?j L, \x ]
] B&: M,
,r i_# I|I K"x_ | \‘x_
f,-’ & K’xk
% f ;‘T f ﬁ ‘1* .
| /] I.f ;' || V| /| III /1 Partial
| 111 {11 I| | _."l .'II I| |I .
il / l WAy |\ /L ] annealing
Tl
J .- )
% % ¢

How will it affect | | |
anomalous response 2 Thermal history of the SK model considered in the text (¢ = (T - I'yvT).

-



Solution of the SC equations
ALy, 1){2q%1, 1) — (1) — ()} + [dr A(t,, DAL, 1). =0

qlt,, fg}g% gt ) — () - Tl(f:]i
3 !dr (A, Dg(t D + Aty DG, D] + ht)hE) = 0

Solution:
20 g Gt 2h, |
Alt, V') =
0 (=t <t), | //\.f 5
gt, 1’y = t', /

Fartial
annealing

“Memory” was partially erased during annealing



Few problems to solve

Derive and solve SC equations near T, for XY spin glass

and Heisenberg spin glass (the most interesting quantity to
look for Is “transverse stiffness”).

Consider slow cooling trajectory on the (T,h) plane of Ising
spin glass, of circular form with center at the point T=T_(1-
T) where 1 << 1, and h=0. Assuming that maximal field is
<< than Almeida-Thouless field h,, ~t* try to describe
the effect of such rotation in the parameter space.

Consider “hysteresis loop” due to variation of magnetic
field from O to +h, than to -h,. Calculate resulting

magnetization.
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