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The generalized p-spin SK model
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The interaction strengths are independent random variables which can be taken,
for simplicity, to be gaussian. In order for the free energy to be extensive (1.e.
proportional to N) the probability distribution of the J’s must be scaled as follows.
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For p =2 this reduces to the standard SK model. We shall be interested in particular
in the p » o0 limit of these models, where much simplification occurs Note that one
must be careful to take the p - co limit affer taking the thermodynamic limit, N - o

B Derrida, Phys Rev Lett 45 (1980) 79, Phys Rev B24 (1981) 2613



Let {o!"} denote a given configuration of the spins with energy #(co'") This
energy depends, of course, on the particular choices of the couplings J The prob-
ability, P(E), that it equals E 1s given by P(E)=8(E — %#(c'")), where O({O))
stands for the average over the couplings (the thermodynamic average)
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Since the J have gaussian distribution, P(E) 1s easily evaluated in the N - o0 limat

2
P(E)=\/ﬁexp [_JEN] (4)
.

Note that P(E) 1s independent of p (which justifies the scaling of eq (2)) and
of the spin configuration. This 1s a consequence of “gauge invariance”, namely
the fact that X(o,J)=%(0',J) and P(J)=P(J'), where J, , =

(o,0) (o0



Now consider two different spin configurations, {¢!'’} and {¢!”} and calculate
the probability, P(E,, E,), that they have energies E, and E, respectively Due to
the gauge invariance this can only depend on the overlap, g, between the two
configurations
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One finds (as N>} P(E\, E, q) = 8(E,— #(0"))8(E,~ ¥#(a?))
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macroscopically distinguishable (|g"*?| < 1) the energies are uncorrelated, namely

P(E,, E,, q)— P(E,)P(E;) (lg|<1)

when g=1, P(E,, E,, q)= P(E,) 86(E,— E;)



Therefore 1n the large —p limit the energy levels become independent random
variables The physics 1s identical to that of Derrnida’s random energy model, defined
as a system of 2" independent random energy levels distributed according to eq. (4)

Since the energy levels are independent random variables the average number of
levels, (n(E)), of energy E 1s simply the total number of levels, 2", times the
probability of finding E

1 N[in2—(E/NI)?]
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If |E|< Ey= NVIn 2 the average number of levels 1s very large
the fluctuations are of order 1/v{(n(E))

On the other hand if |E|> E, there are
simply no levels (with probability one) Therefore the entropy 1s

E 2
S(E)=N[1n2—(ﬁ) ] |E|< E,



Using dS/dE =1/T one finds that the free energy 1s

F_{—Tlnz-ﬁ/ﬂ: T>T,

N | —Vin2, T<T,

The cnitical temperature, T, 1s

T.=1/(2VIn 2)

Below T, the system gets stuck in the lowest available energy level, E = —E; and
the entropy vanishes. Having completely disposed with the spin configurations, 1t
1s not easily seen that this model describes a spin glass Some evidence 1s provided
by the behaviour of the magnetic susceptibility below T, which can be derived by
similar arguments [8]. In the following we shall solve the p—» o0 SK model directly
and the spin glass nature of the low-temperature phase will be more apparent



Replica solution for infinite-p limit
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In the p - oc model we shall be able to calculate explicitly the function P(gq) (this
cannot be done 1n the finite-p case) using the replica method to calculate Z" (we
hereafter set J=1)
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The spin trace can be performed by constraining Q. () to equal Q,,, with the aid
of a Lagrange multiplier matrnx A,. One then gets
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Unlike the case p=2, the effective hamiltoman is not quadratic in Q,, which
therefore cannot be eliminated. In the limit N »co0, Z" is given by the dominant
saddle-point of G, namely mean field theory is exact, and the average free energy
1s +BF/N =lim,_,[G/n—4B?] Actually one must find the absolute maximum of
G, not the mimimum. This reversal is one of the strange features of the n -0 limit

Since the matnx of fluctuations (of Q,, or A,,) has 3n(n—1) parameters, 1t acts,
for n <1, on a space of negative dimensions. In this situation the role of negative
and positive eigenvalues 1s switched [6] and stability requires that G be maximized!

In order to evaluate G explicitly one must impose some ansatz on the structure
of Q., and a corresponding structure on A,,. For example in the high-temperature
phase, the replica-symmetric ansatz is reasonable since we expect only one pure state
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-0



The saddle-point equations are
3B pQP =], Q=J. Dz th? (zvA +Bh)

When p = o0 there exists a unique saddle-point for all 8, h

Q=th*(Bh), r=0

The resulting free energy 1s then calculated from (22) and (25), to be
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This replica-symmetric solution 1s indeed stable for large T (we shall derive the
precise phase diagram below) and reproduces correctly the value of the thermody-
namic quantities 1n the high-temperature phase of the random energy model [8]
This phase contains a single pure state P(g)= 8(q —th?(8h)), whose self-overlap
1s the square of the magnetization.
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The entropy 1n this phase

clearly becomes negative for T < T,(h), and therefore there must be a phase transition

Unlike the case 1n the p=2 model, the g =th*(B8h) solution is the only replica-
symmetric one at all temperature (for p—>00) In fact, an analysis of the stability of
this solution within the complete replica space (a la De Almeida-Thouless [11])
shows that i1t 1s always locally stable in zero field, as soon as p>2 In this respect,

the p=2 SK model 1s somewhat special The spin glass transition must be (for
p>2) a first-order one, at least as far as the order parameter function g(x) 1s
concerned In fact we shall show, in the p—co case, that the Edwards—Anderson
order parameter, g(1), jumps from 0 to 1 at T, However, since the order parameter
1s a function, and the discontinuity appears only on a set of zero measures, the
transition turns out to be of second order in the thermodynamic sense.



1-step RSB

At the first step it is “natural” to divide all »n replicas
into n/m groups with m replicas in each one (until now it
is assumed, of course, that both m and n/m are integers).
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Here J=1



Free energy is a functionof g,q, A A and m

1
; G=ln2—%ﬁz(fﬂq5+(1 —m)qy) +%(m410‘?n +(1—-m)A,q,)
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For p — oo the saddle-point equations are easy to solve First dG/aq, =0 implies

A =38"pgl™

For non-trivial symmetry breaking we must have g, < g, =<1, thus A, =0 If g, 1s also
<1then A, = 0,1n which case we will recover the symmetric solution g, = g, = th’(8h).
Hence g;,=1 and A, ~©

In this circumstance the double integral in G 1s easily calculated, and we obtain
(‘l | CO: )tﬂ - 0)
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+$ In (2 ch (mBh)) —3mA, th® (mBh) +O (A3, 1/4,)

Differentiating with respect to A, then yields
go=th’ (Bmh),  q,=1
Finally the variation with respect to m gives
m?B?=4[In2 +In ch (mBh)— mBh th (mpBh)]
This equation tells us that mB = B. 1s independent of the temperature, and B, 1s

Bo=4[In (2 ch (B.h)) — Bch th (Bch)]

Since m =< 1, the solution exists only for T<T.=1/8.



T.1s precisely the value of the temperature T,(h), at which the entropy, eq (28b),
of the high-temperature solution turns negative, and coincides with the critical line
of the random energy model The free energy obtained for T < T.(H) can easily be

calculated, using the above solution.

F 1 h
N 2Tc~—hlh?c

precisely the result found by Dernida [8)], for the low-temperature phase of the
random energy model The magnetization 1s given by m =th (h/ T.) and the magnetic
susceptibility 1s temperature-independent (y =1/T. ch’ (h/T.)), as 1s also true 1n

the SK model [6].

Here the first breaking of rephca symmetry gives the exact answer.

g(x)=th? (B.h)O(T/T.—x)+6(x—T/T.). (Appendix A)

P(g)=(T/T,) 8(qg—th’(B.h))+ (1-T/T.)é(q—1)



General p > 2 spin glass
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where a 1s the replica index. Using the relation
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and taking the saddle point of the A and g integrals, one has
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Replica symmetric solutions  ¢.;=¢ and A, =A

G , dx .
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The mean field equations for A and ¢ are then,

d
N=18’pg? ", ff“'ijre_xw tanh’(Wx+gk)  (11)

Egs. (11) will now be considered for general values of p. For simplicity, the magnetic
field h will be set equal to zero. For all values of p, the equations have the solution
A =g =0. A replica symmetric solution is stable provided that [10]

1 ¢ dx
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Since the first equation in (11) implies that g/A is proportional to g*~7, the first
term is infinite for p > 2 and so the solution is stable at all temperatures. This is in
contrast to the case p = 2 where the solution is stable only for T > 1.



There are other solutions to eqgs. (11) when p is finite. These solutions always
involve a jump in the order parameters ¢ and A. They can be found explicitly in
expansions around the limits p - oo and p — 2.

These solutions are all unstable (can be checked directly for p=2+e and p >> 1)

The only stable replica symmetric solution in zero field is then g = 0. However, it
is not satisfactory at low temperatures. For any p, the entropy per site s=1n2 —
1,/4T? derived from the free energy of this solution (3) becomes negative below a
temperature 7= 1/2/In2 . There must then be a phase transition at a temperature
greater than this which involves replica symmetry breaking. Since the high-tempera-
ture solution does not become unstable, the new solution cannot be close to it and so
there must be a jump in the order parameter function at the critical temperature.



Solutions with one replica breaking Large p first

n replicas  are grouped into n/x, clusters of x, replicas.

G
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The expansion around the large-p limit will turn out to be an expansion in 2 7
and so should be rapidly convergent. For simplicity only the case of h =0 will be
considered. Assuming that at large p, ¢, is small, ¢, is close to 1 and that A x? is
large, then,
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Differentiation with respect to g,, A, and x, gives mean field equations whose
solution is

7 2 2
xo€(x e XoPh’/4 d £(x,) g~ XopPB /4
of(%o) 18x2=1n2 + x} -

q0=10, g, =1-
L=xo  /ipp? dxo X0 {ipB?

(21)

The free energy of this solution coincides with the free energy of the high-tempera-
ture replica symmetric solution, ¢ =0 only at x, = 1. Substitution of x,=1 into eq.
(21) then gives the critical temperature,

1 T
T, = 1+2°t*h
2vIn2 ( \/p(ln 2)3 )

The break poini X 18 given by, T T T 2
xg=—|1=-2""D—¢gt — V‘ i
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Now we consider region of p slightly larger than 2:

L _ p = 2+ &, where & 1s small,
the jump near T, is small

a solution, A;=¢,=0and ¢,, A, and x, at h = 0 are obtained from maximisation
of

G
— = (1= xo) {1B%f = I\ + 1N — IN(2— x0) + 350 (33 — 15x, + 17))

The solution, for ¢, and x,

3 £ 12 — F= —
g, = EI_ +G(E2) (26) P p(zxﬂ] T+ p) (27)
0

The critical temperature is again at x, =1 and is given by

T.=(3e)"(1 - Le).



The new phase is stable for a finite range of temperatures. In this phase, the
system chooses the valleys with the lowest free energy. In the thermodynamic limit
these valleys have overlap zero with probability 1. For p — oo, the free-energy
valleys consist of single configurations whose energies are independent gaussian
random variables and the system freezes completely into its ground state at 7. For
large but finite p, there are small correlations between the levels and the freezing is
incomplete. Since the size of the valleys is small, the self-overlap is close to 1. As p
decreases, the size of valleys near T, increases and the transition becomes continuous
as p — 2. Since the self-overlap of valleys is non-zero, each valley behaves qualita-
tively as though it is in a magnetic field which tends to « as p — o0 and to zero as
p — 2. In the following sections, it will be shown that there is an explicit relation
between p and the magnetic field of the Sherrington-Kirkpatrick model in expan-
sions around p =2 and around p = oo near the instability temperature of the phase.



Stability of the first low-temperature phase

Stability condition

——

In the space where a and B belong to the same group.

~z* /2 ‘-4
1 g fme cosh* L/?lel

P 1 }*1 fm e ? 2 /2 C[}Shl“ri'l

>0

For large p, the phase is stable provided T > T, where 7, =

For p =2 + ¢, the solution (26) is stable. closeto T_
However, the expansion leading to egs.

(26) and (27) is not correct when x, is small

In this case, the solution to the mean field equations derived from (25) is
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Where c is related to the temperature via
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it is stable provided ¢ < V6 and so T is given by
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Second transition temperatures T, are the same as for
the SK model in presence of external field h

h=y2pIn2 +ollnp), asp—

h=67(p-2)""(1+0((p-2)"")). asp—2.

T, Is the temperature of local instability.
Below it continuous RSB state Is formed



Random directed polymer problem

PHYSICAL REVIEW B 82, 184534 (2010) M. V. Feigel’'man,'! L. B. Ioffe.> and M. Mézard-

XY model with transverse random field on a Bethe lattice
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Static mean-field approximation

This implies that B;= -ﬁ:_ﬂ (o). giving the recursion equa-
tion relating the B he]da
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Search for instability leading to nonzero
B self-consistent B

I ¢ tanh(B¢,) )
keP L K '5.‘: _

B. Derrida and H. Spohn. J. Stat. Phys. 51, 817 (1988).

B, Traveling wave method

where the sum 1s over all paths going from the root to the
boundary and the product II,_p 1s over all edges along the
path P. The response = is nothing but the partition function
for a directed polymer (DP) on a tree, where the energy of
each edge is e F+=(g/K)[tanh(B&,)/&,] and the temperature

has been set equal to one.



Replica method

The DP partition function =, defined in Eq. (9), depends
on the random quenched variables &,. One expects that the
free-energy 1n a short-range-interaction problem 1s a self-
averaging quantity, so the value of log E for a typical sample
is obtained from the quenched average of log E over these
random variables, denoted by In =. In the replica method
one computes it by writing

mE=1lim(E"-1)n Z"= ] |2 1l g tanh(BE,) .

n—0 a=1,...n | P, keP, K &

The average of 5"

1s obtained by a sum over n paths = S T {Etanh(ﬁgﬂ ]fk
T v LK &

The RS solution assumes that the leading contribution to
Eq. (12) comes from nonoverlapping independent paths (r,
=1). This gives



=n_ pin| & L d¢ o _ _ (Shyn
="=K P : tanh( BE) = exp(Ln[log(g/K) + f(1)]) = ()
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The RSB solution assumes that the leading contribution to
Eq. (12) comes from patterns of n paths which consist of n/x
groups of x identical paths, where the various groups go
through distinct edges. This gives

= L g tanh(B&) [* g for B<Prse:
log == ;l" K{E & ] =1L In E) ) flx) is m_ini_m.f_l] at;l;e buundar}-',_x:._l
where I ' dE| tanh(B€) |*
flx)=—Im K
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B> Bgrsg. the function f(x) has a minimum inside the interval
(0,1) at some value x=m << 1, this corresponds to the sponta-
neous breakdown of the replica symmetry in the DP prob-
lem.
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The RSB solution assumes that the leading contribution to
Eq. (12) comes from patterns of n paths which consist of n/x
groups of x identical paths, where the various groups go
through distinct edges. This gives

= L g tanh(B&) [* g for B<Prse:
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B> Bgrsg. the function f(x) has a minimum inside the interval
(0,1) at some value x=m << 1, this corresponds to the sponta-
neous breakdown of the replica symmetry in the DP prob-
lem.



These two regimes of the DP problem are qualitatively
very different. In the RS regime the measure on paths de-
fined in Eq. (9) is more or less evenly distributed among all
paths. On the contrary, the RSB regime is a glass phase
where the measure condenses onto a small number of paths.
An order parameter which distinguishes between these two
phases is the participation ratio Y= pw5, where wp is the
relative weight of path P in the measure in Eq. (9). It is easy
to see that ¥=0 in the RS phase. In the RSB phase, the value
of Y is finite and non self-averaging (it depends on the real-
ization of the &'s), and its average is given by 1—m. This
glass transition, and the nature of the RSB glass phase, are
identical to the ones found in the random energy model.**
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Physical meaning of the RSB in the present problem:
broad distribution of local fields B without even 1%
momentum <B>:

m
0 at Tar
P(B) = pryey at large B> B.;}\
Typical value of B

This power-law tail at large B translates into the behavior of
the Laplace transform

JP{S} ~ | — {.SB[}}”! at SB.[}*;:: 1.



Few problems to solve

» Calculate critical behavior of entropy at the glass
transition in p-spin glass model, in the limits p >> 1
and p-2<<1

» Calculate average participation ratio <Y> and its
square <Y2> In the RSB phase of the random directed
polymer model

* Find critical value of K(g) for the RDPM described in
the lecture, such that temperature-driven transition to
the ordered state must be described via RSB scheme.
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