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Useful review: Physics of the spin-glass state
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Spin Glass Theory and Beyond
1. 1-step RSB for the SK model

2. Hierarchical Parisi scheme

3. Parisi function g(x) and its calculation near T_

4. Interpretation: overlap distribution P(g) and
ultrametricity



1-step RSB

At the first step it is “natural” to divide all »n replicas
into n/m groups with m replicas in each one (until now it
is assumed, of course, that both m and n/m are integers).
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Here k numbers the replica blocks and ¢, numbers the
replicas inside the blocks. After the Gaussian transforma-
tion in Z[Q] for each of the squares in the above equation,
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The summation over the spins gives:
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Now the limit #—0 has to be taken. _
formal analytic continuation turns l<m<n. into O0<m<1
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in the cases m=0 and m=1 replica symmetric solution is recovered

with =g, and g=gq, respectively.



Minimum or maximum ?

Note now another essential point. Actually, in the rep-
lica formalism one is looking for the maxima and not for
the minima of the free energy. The formal reason is that in
the limit #—-0 the number of components of the order
parameter (} becomes negative. For example, in the case of
the one-step RSB each line of the matrix Q contains (m
— 1) <0 components whlch are equal to g, and {n m) —

—m<0 components which are equal to g

At high temperatures it is sufficient to consider the quadratic term only
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It 1s obvious that for 0<m<1 the “correct extremum” in
which the Hessian is positive, is the maximum and not the
minimum with respect to ¢, and g,.



1-step RSB saddle-point

Extremal of the free energy f(m,q ,q,) over all 3 variables

The result of numerical solution iIs

1) In the low-temperature phase 7" <1 the function f
has indeed a maximum at a certain point: O<m(T)<];
0<qy(T)<1; 0<q,(T) <1 (both for T—1 and T -0 one
gets m(T)=0).

2) Although the entropy at low temperatures still be-
comes negative, this negative value appears to be much
smaller than that of the replica-symmetric solution: S(T
=0) = —0.01 {Whl]E for the RS solution S(T=0) =
—0.17)

3) The most negative eigenvalue of the Hessian near
T.is equal to —c(T —T,)%/9 (c is some positive number),
while for the RS solution it is equal to —e¢(T—T,)%. So
that, in a sense, the instability 1s reduced by a factor 9.



Full-scale RSB: Parisi scheme
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my m; (i=1,2,..,k+1) such that my=n, m, ;=1 and all
— m;/m;,, would be integers. Next, let us divide n replicas
ﬂ’z{ T-g,; @ into n/m; groups such that each group would consist of m,
oA % replicas; divide each group of m; replicas into m,;/m, sub-

groups so that each group would consist of m, replicas;

1 b
°f Qa=q;: where f(ma )=( )

m;,

%o

FIG. 15. The explicit form of the matnx @,, at the two-step r
symmetry breaking. FIG. 14. The definition scheme for the matrix elements @, at the two-
step replica symmetry breaking.



Free energy Is a function of k+1 variables q _and k variables m,
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G. Parisi, J. Phys. A13, L115 (1980).

General equations derived In
G B. Duplantier, J. Phys. A14, 283 (1981).

Free energy:
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and the function g(x,y) is obtained from the following
nonlinear differential equation:

dglx; y)  1dg(x) [8(x; »)  (Ig(x; »))?
dx 2 dx ay* +x( dy )l

with the boundary condition:

g(1; v)=In[2 cosh(fBy)].



One can prove that q(x) is monotonic function, thus its inverse x(q) exists

Then:

the saddle-point equations 0f/dg(x) =0 Are equivalent to

q4= dem:[?i y) where the function m(g; y)=dg/dy is obtained from

dm(gq; }) ) ] ﬂlm[q; V) dm(g; y)
dg 2[ '

= | 3F+31[qlm[¢: y) X

With boundary condition m(1,y) = tanh (By)

There two equations constitute a system of functional equations
which determine q(x) function and its inverse x(qQ)



Solution for g(x) slightly below T
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Can be analyzed by expansion in power of Q_

The result of the expansion up to the fourth order is:
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T=1-T<<1 / Higher-order terms
Term responsible for RSB (to be checked later)

The above Eq. for f(Q) should be expressed via g(x) function
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For the free energy one obtains:
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Variation of this expression with respect to the function
g(x) gives the following saddle-point equation:
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afq{x)—xqztx)—zq(xl J' dyg(y) — J-u dyg*(») +3¢°(x)=0.

\
Take derivative wrt x and obtain

- g'(x)

]
zer—qu(x)—:f dya(y) +24%(x) | =0

| It is equivalent to the pair of equations

l
| 27—2xq(x) —Ej dyg(p) +2¢*(x) =0

X

or

| g'(x)=0. Cannot be true forall x but can be so for some x

| (qp, O<x<x
| ] where

g(X)=13%  XpSX<X
x1=2qy; Xp=2q
\ gy, x<x<l

‘This solution must be substituted to the original equation



Substituting this solution into the original saddle-point
equation at the points x=x; and x=ux,; one gets:

q0127—2491+2¢7) —3 45=0,

q1[27—2q, +24ﬁ] —3 4?31'3-

The solution of these equations is:
q'EII=D! A g
g1=T7+ G{Tz)




Higher ordersin 7

H.-J. Sommers Parisi function g(x) for spin glasses near T,
J. Physique Lett. 46 (1985) L-779 - L-785
5 39

g(l) =7 + rl—T3+Er‘——2—r5+ﬂ(T‘5},

X, =27 — 472 + 1277 — 697° + O(7?),

f
% (1+37+127%)x - _;- (1-7)x + O(%) (x < xy),

g(x) =
(q{l} (x =2 x,).




Stability of the Parisi solution

1. Parisi solution fulfills exactly the condition of marginal stability
derived with the TAP equation approach (Bray & Moore)

L= BJ2GH0) = f2JA(1 — m)? = f2J3(1 - 2q + 7)

| owest nontrivial order:

(1-1)°=1-2t+7)+37

Problem to solve: check marginal stability in the next ordersin T

2. Stability check within replica scheme



2. Stability check within replica scheme (Dotsenko Feigelman,loffe)

Since the matrix O.; is not known explicitly and has a complicated
structure, nobody has succeeded in rigorously proving the stability of
the Parisi solution in general. However, it can be proved (in the leading-
order approximation in 7) near the transition point T, where the matrix

K z,; can be expressed explicitly.
Kapys = =200+ Q2s)0us ys = Q05 — Qusbpy

- Qﬂyaaﬁ - Qﬂﬁﬁw' Here only terms responsible for RSB are
retained within 4-th order F(Q)
Straightforward but cumbersome calculations show that all eigenvalues
of the K 4. matrix are negative or zero, i.e. they have the same sign as
the eigenvalues at high temperature; therefore the Parisi solution is
stable. We restrict ourselves to a simpler problem of stability in the sub-
space that can be described by the Parisi ansatz. To study stability in
this subspace, we can use the continuous description of the n — 0 limit
of the free energy (2.2.23) and expand it around the saddle point

to second order in small deviations Ggx)(g=qg°+ @)
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The spectrum of the K g ; matrix then follows from the equation

5//8q(x) = Ag(x)

> 2 1
AG(X) = —24'(%) ] dy G(»).

X

Conclusion: all eigenvalues are non-positive
(either negative, or =0 )
Problem: to derive the above conclusion



In presence of magnetic field:

Low fields:

PP | 3 hl 2/3
o w-3(2)

At the AT line q(0)=q(1)
RS solution

96"

7

fof=--- High fields:
See Sec.2.2
> In the book by

X, 1z
Dotsenko,

Figure 5 Solution ¢(x) in the vicinity of 7 for zero (full line), small (dashed line) and Feigel'man &
large (dotted line) magnetic fields.
loffe




De Almeida — Thouless line

J R L de Almeidatt and D J Thouless 1. Phys. A: Math. Gen., Vol. 11, No. 5, 1978. p983

Instability line we found right now coincides 2 _ o 2)2
with the marginal stability condition (TH)y"= <({@-m7)>

If external field h>0 is present:

2 = —~rtY <
(T/J) | Gy & seeh® (L )

IVS KRR
T = (Z) (T) (h << J)

4 J h
Tar = Xp | — ZJ:’:) (h > J).




Field-cooled susceptiblility
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H.-J. Sommers Parisi function g(x) for spin glasses near T,
J. Physigue Lett. 46 (1985) L-779 - L-785



FC and ZFC Susceptibllities
Xea = T '[1 — fdx g(x)]
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Distribution of overlaps P(q)

Pure states: connected correlations decay to zero

(o) =m= T wam (00))e=(o0)) (oMo

Here the aﬂ’s label the pure states and the w, are their
statistical weights wo=exp(—F,)

the two-point correlation function can be represented as the linear combination

{U1U1> = 2 wn{ﬂlﬂl}a

| N
- B2
The distance between the states a and 8 d, =N 2 (mi—m7)
I
Complimentary quantity: overlap | A
—— ) m*m?
G’aﬁ—N = i T



Probability distribution of overlaps:  P;(q)= %wawgﬁ{%ﬁ*?}-

After averaging over disorder: P(g)={({(P;(q))).
Consider the following series of correlation functions:
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Now we proceed to averaged
description with replaces

gV = J.qu(q}q g® = J‘qu(q}ﬁ'k
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Physical interpretation for g(x)

al X(@=2q for 0<qQg<q,
/ X(@) € (29,,1) for g =g
| |

X

1

P(q) =dx/dg=26(q,-@) + (1-21) 6(q-q,)

Broad distribution of overlaps qﬂﬁ:




Overlap distribution is not a self-averaging quantity

Mezard, M., Parisi, G., Sourlas, N., Toulouse, G. and Virasoro, M. (1984) Phys
Rev. Lett. 52, 1156; (1985) J. Phys. (Paris) 45, 843.

l
FJ{{?;}PJ{QI) - FJ(‘?I) -PJ{':}':} = E EP{"-?I]*S(@I _qzl - P{.‘?l} P{fh)l

The average number of states with a weight in the interval (P,
P + dP) (which we denote by f(P) dP) can be calculated explicitly [11].

there are an infinite number of states with

infinitesimally small weights, but there are also a small number of states
with finite weights, for example, the plateau in ¢ (x) (or the 6-function ir (q ):

comes from a single state with a minimum value of free energy.
[)errida, E anf:l_'I_‘nul‘ﬂugg,' G (1_9_85} J’ fﬁys. f_’P:_rrfs,J Ler. 46, L223,
Random free energy hypothesis:

distribution p(f) o exp [x,N(f—-f)/T], (x, <1)

) Bray, A.J. and Moore, M. A. (1980) J. Phys. C13, L469.
Boltzmann factor exp ( —Nf/T)  Tanaka, F. and Edwards, S.F. (1980) J. Phys. F10, 2471



The overlaps between three metastable states are not independent.

Joint probability distribution for three states:

I

P(qy, Guns 43) = I,E} n(n—1n—2) ﬁ%ﬁ{gﬁ“G’lz]ﬁ(Qﬁ_fi‘za)ﬁ(Qm_qn)-

An interesting property follows directly from the Parisi ansatz: the
probability P(qy,, 23, g3,) # Oonlyif g, = g, = q,., where(a, b, ¢) is
some permutation of (1, 2, 3). The value of the overlap determines the
“‘distance’’ d,, = g(1) — q,, between metastable states. Such a space of
metastable states with this distz 43 l
““ultrametric’’ space. It can beim: %
with the distance between two sta %
first common ancestor. 22

FIG. 14. The definition scheme for the matrix elements @, at the two-
step replica symmetry breaking.



Hierarchy of pure states

74 Ultrametric space:
fof —————=====——AggT—————————-

) ﬁ T d,,=d,=> 9,
W AVIATANIAN)
MU\W/\W\WILWAAWILY W WAV WAV

FIG. 14. The definition scheme for the matrix elements @, at the two-
step replica symmetry breaking.



Few problems to solve

1. Derive full equations for q(x) with all terms of order Q4 and
demonstrate that terms with 3 and 4 replica

summations are indeed small as extra power of 1

2. Demonstrate that marginal stability condition is fulfilled with
accuracy up to higher ordersin =

3. Derive the relation y,. = (1 - qgz,)/T by calculating free
energy as function of magnetic field h

4. Find the solution for q(x) function in strong field h >> J
5. Find Paris-type solution for XY glass and for gauge glass

6. Study and present Replica Fourier Transform method developed
in arxiv:9709200, arxiv:9703132, Physics Procedia 75, 2015, P 802
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