
  

Parisi Scheme for ReplicaSymmetryBreaking

1. 1-step RSB for the SK model

2. Hierarchical Parisi scheme        
    
3. Parisi function q(x) and its calculation near T

c

4. Interpretation:  overlap distribution P(q) and
 ultrametricity

Useful review: 

Fundamental book:  M. Mezard, G.  Parisi and M. Virasoro  

Spin Glass Theory and Beyond



  

1-step RSB
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Here J=1



  



  

Second term:



  

Minimum or maximum ?

At high temperatures it is sufficient to consider the  quadratic term  only



  

1-step RSB  saddle-point
Extremal  of the free energy  f(m,q

0
,q

1
)  over all 3 variables

The result of numerical solution is



  

Full-scale  RSB: Parisi scheme

where 



  

Free energy is a function of  k+1  variables q
k
  and k variables m

k

To get exact solution, the
limit  k    must be taken

It means we should consider
order parameter function
             q(x)



  

General equations derived in 

Free energy:



  

One can prove that q(x)  is monotonic function, thus its  inverse x(q) exists

Are  equivalent to 

With boundary condition     m(1,y)  =  tanh ( y)

Then:

There two equations constitute a system of functional equations
 which  determine  q(x)   function and its inverse  x(q) 



  

Solution for q(x)  slightly below  T
c

Can be analyzed  by  expansion in power of   Q
ab

 =1-T << 1 Higher-order terms
(to be checked later)Term responsible for RSB

The above Eq. for f(Q) should be expressed via q(x) function



  



  

Take derivative wrt  x  and obtain 

It is equivalent to  the pair of equations

Cannot be true for all   x    but can be so for some x

This  solution must be substituted to the original equation 
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Higher orders in    



  

Stability of the Parisi solution

1.   Parisi solution fulfills exactly the condition of marginal stability 
      derived with  the TAP equation approach  (Bray & Moore)

(1- )2 = 1 – 2(

Lowest nontrivial order:

Problem to solve:  check marginal stability in the next orders in  

2.   Stability check within replica scheme



  

2.   Stability check within replica scheme

Here only terms responsible for RSB are 
retained within 4-th order F(Q)

(Dotsenko Feigelman,Ioffe)



  

Conclusion:    all  eigenvalues are non-positive
 (either negative, or =0 )

Problem:   to derive the above conclusion



  

In presence of magnetic field:
Low  fields:

High   fields:
See Sec.2.2
in the book by
Dotsenko,
Feigel'man &
Ioffe

At the AT line q(0)=q(1)
     RS solution 



  

De Almeida – Thouless line

Instability line we found right now  coincides
 with the marginal stability condition

(T/J)2 =  < (1- m
 i

2)2> 

If external field  h>0   is present:

(T/J)2

p983 


AT

 = 



  

Field-cooled susceptibility


FC

 =  (1 – q
EA

)/T   where  

For the RSB case,
symmetrization
must de carried on 

Should be derived !

Follows from q(o)=0



  

FC and ZFC   Susceptibilities 


 ZFC

   = (1­q(1))/T



  

Distribution of overlaps P(q)

Pure states:  connected correlations decay to zero  

Complimentary quantity:  overlap



  

Probability distribution of overlaps:

After averaging over disorder:

The property was used:



  

Now we proceed to averaged 
description with replaces

Therefore



  

Physical interpretation for q(x)

x(q) = 2q     for   0 <  q <  q
1

x(q)  (2q
1
 , 1)     for   q

1
 = q

P(q) = dx/dq = 2 q
1
­q)  +    (1- 2 q­q

1
)

Broad distribution of overlaps  



  

Overlap distribution is not a self-averaging quantity

Random free  energy hypothesis:



  

Joint probability distribution for  three states:



  

Hierarchy of  pure states 

Ultrametric space:

d
ab

 = d
ac

 =>  d
bc



  

Few problems to solve

1.  Derive full equations for q(x)  with all terms of order Q4 and 
demonstrate that terms with 3 and 4 replica 
summations  are indeed small as extra power of  

2. Demonstrate  that marginal stability condition is fulfilled with 
accuracy up to higher orders in   

3.  Derive the relation FC =  (1 – qEA)/T   by calculating free 
energy as function of  magnetic field h

4.  Find the solution for  q(x)  function in  strong   field h >> J

5.  Find Paris­type solution for XY glass and for gauge glass

6.  Study and present Replica Fourier Transform method developed 
in   arxiv:9709200, arxiv:9703132, Physics Procedia  75, 2015, P 802
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