One-Dimensional Spin Glass with Oscillating Long-Range Interaction
Z. Phys. B - Condensed Matter 51, 237-249 (1983) M.V. FeigeI'man and L.B. Toffe
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At T<T,=c the averaged value of the coefficient at
l|%, which is equal to t=1-—¢/T, becomes negative,
which implies the instability of the state with (y> =0.

t<< I, ~ exp(y~!|z|*"?). Phase slips are absent

At |z|>7¥? it is convenient to pass over to the new
variables: the amplitude and phase of the field ¥:

y=pexplio+iQx). (5) Slide 3



The free energy H . [¥] from (3) can be minimized
over p, which leads to the phase-dependent energy

Hlp]— j{ (’j‘i) ~TY5(x—x)

: [ln ch (Z?p cos(@ x + qa])

<ln ch (? cos a)>]} dx (6)

in

where {F(a)>,= | F(x)da/2n, and p is approximate-
)

ly determined by the equation

p=c<ccrsa:-th (%Igcc-sn)>. (7)

Equation (7) 1s obtained if H[@] is neglected (the
validity of 1t is discussed below) in comparison with

Fm=Heﬂ[wJ—H[«o]=p2—cT<lnch2""‘;“sﬁ> . (8)
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I1. The Vicinity of the Transition Point %3 < |7| <1

Fypa=1p%+ 3 9)

For the specific heat C(T) and magnetic susceptibili-
ty ¥(T) we obtain:

C(T)=cO(—7) (tI>¥*"7) (10)
(TD=c/T (t>»y*?) (11a)
D=1~z (=>y*?). (11b)

Formula (11b) is valid at observation times that are
not too large (sce below). Formula {10} and (11) are
similar to those in the Mattis model [12] of spin
glasses without frustrations, which is quite natural,
since the averages {(o¢,> arc also expressed through
slow variables in our model. The difference is that
we have two variables, p and ¢:

oF
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Phase-dependent Hamiltonian with “pinning”

Hlp(),01=[dl[dx |77 (2] —e 56 —x)
i

Hamiltonian (TS] coincides with the

| one studied in [9-117 in connection with the prob-
+ COS 2(Q1C+iﬂ)]+ lem of charge-density wave pinning by impurities.
, 9. Fukuyama, H., Lee, P.A.: Phys. Rev. B17, 535 (1977)
{cos(p(x) —(0))) ~exp(—x L"), 10. Feigel'man, M.V.: Zh. Eksp. Theor. Fiz. 79, 1095 (1980)

11. Vinokur, V.M., Mineev, M.B., Feigelman, M.V.; Zh. Eksp.
Theor. Fiz. 81, 2142 (1981)
L=Ac 'y * st (A~1)

@

Stochastic Transfer Matrix method [10]

en(@x) ] | l!r-'+1 (aﬂn)=+ T !H-H d'ex

; ss‘.i['ilﬂ}—ﬂﬂ{q’;'“_* ﬂtp 2 Uy 5!]}:

Vylgy)= mnst-exp[— 2 p
r

— Veos(g+Qzxy).

a Hamilton-Jacobi equation (with a discrete

imaginary “time” N) corresponding to the “equation of en (@) =—Pn cos(¢p—1yx)

motion” Bo=(cvV*)".
vep”+V8(z—x,)sin(p+Qz) =0. (1
Zh. Eksp. Teor. Fiz. 81, 2142-2159
0 (W W W, (8) = exp (=@, (8)) ~ —-1n (£2) | p ,
5 (3550 ()= exp (-0, )) ﬂfn(ﬂr) (1981)
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Stochastic Transfer Matrix method
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o 7
+F" ’“Z—ﬁ'"rﬂlﬂ (1w +Qzx), (11a)
Bo=(cvsV?)", Basic scale of the pinning >> V _
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Asymptotic analysis

a(waw 1

W) at BB,  5o(7 55t W) =0 W(p)=constexpl—/s(§/p)’],

Statistics of shocks in Burgers turbulence

Small B << B, (but also f>V)

Here Fourrier expansion works better: en (@) =—Px cos (p—1yx).
Stability analysis
g oW W .
75 (5‘ﬁ ~ 3 )=U- W, (8) =exp(—®,(p)) ~ ﬂz ln(ﬁ ) w.r.t. second
B g harmonics selects
V. M. Vinokur, M. B. Mineev, and M. V. Felgel’'man solution

. _ . with the Logarithm
Zh. Eksp. Teor. Fiz. 81, 2142-2159 (1981)
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Moderately Low Temperature Range sx<T <T,=¢

At T <c the phase-pinning potential

K de, . |\
En+ 1(@3)_81:1(‘;{’): - Jn+ 1 ( 1)

4p5 dg 2p
T 52 Vip+@x)=—Tlnch [—ms(qo%—Qx)]
a+1 2 By T
+--"5K s+ V{ip+0x,) _ .
4 po Oy Cusp singularity
replace [, by (I >=c™!, (at T>«k). at low T
kK (e, \
— — n V
En 1((:3) Eu{(P} 4‘0%{: (ﬁqo) + {‘;D +C’:n)
Generating functional
. Let us pass from integrating over u to
P()=[ZnPsexp {lzjdq} [“n (EH 17 integrating over M, so that M =p

K2 (0e,\
VLR (&q&) ‘”‘““ﬂ’)]} PO)=| IMTexp(S—Y [doj,z,)

. 0 K [de, \?
S=I§Id¢? {M"W[E”+l_aﬂ+dpgc (aq))

—Vip —r—o:,,]]}.
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Average the functional over o

, d* K% [de,\*
S=§{IIM" E[E"+I_E“+4,ﬂﬁ€ (a{p)]d@

+

n E do, exp(Zip, Mn[ﬁﬂn)}]}
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Estimate for the neglected terms

© ¢ 82 10s % [og 1K i\ 23
AS_K;aK—-H(pDC)de@ dx {aq}? [ax+4pg (a<p) ]} AS/Sy ~ (?) <1

Correlation length

— —1
X ~ y 473 'I' 1/3 C
The total scale of the &(¢p) variation is determined by
fluctuations with @~ 1. Tts value E~cy~ %3 is the E~y~ 2/3 @5!3¢
same as at T~ T..

Let’s find the phase correlation length L,. For this

purpose we estimate the phase variation by each

step (|[4¢|=|p,— ¢, 4| where @, is the thermal av- L cl(AaV¥S =1
erage of ¢, Then L, will be determined by the ¢ <( fP] >
condition:

Since thermal fluctuations are small, @, is deter-

mined by the position of the &(¢) minimum (perhaps, a (AGY S~ 2= < (ﬁli )z>—1
local one): £(p)=0. Using the recurrent equation 0o’
(23) we get
| oL =43 U3 (o
B~ey 23 (Tje)y= 13 Xpn~e 1y (The)' ", (@~ T)0)

— 43 _ )
L,~cy 3Ty~ 23 Is much smaller than L(p Slide 11



Structure of free energy minima:
now we show that the estimates

_Xm}!_d"'r}@lﬂﬂ_l
E-“'-'}"-EH\'PEH!‘:

Indicate the fractal structure of free energy minima
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1 E() probability of finding a zero of f(¢' + ®)

within an interval of width &,

v K4 & &\ 23
g P(®) ~ LA (_ﬂ)
2 F($) \&
-§ | "y the total number of zeros
v I 1/3
s e (;) T3
g .' 0
o The minima of e(¢)
Figure 11 Hierarchical structure of metastable states. constitute a fractal set

with fractal dimension D; =1

WA T L w—

consider the behaviour of the function Jf(@) = 0e/09 at ¢ = ¢! + &,
where ¢'is any zero of f(¢). The characteristic scale of f(d'+ ®)is F(P)

F(®)~ E(®)/PD ~ (D/v)”"’ X ~y— 43Pl
E~v— 2/3 (pﬁ
the scale 8 of 3//d¢ is determined by the smallest scale fluctuations with & ~ &,
6 e —24"3@ 1/3
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Observables

First of all, we find the free energy of the system in
a certain metastable state. As was shown at the end
of the previous section, the barrier height at T3>« is
much larger than T, therefore, when calculating the
characteristics of the system corresponding to short
time scales (quasiequilibrium I), the phase ¢, can be
considered constant at a given point i and as satisfy-
ing the condition &(¢;)=0. Thermal fluctuations of
p(x) can always be neglected; therefore, the free
energy F; coincides with the Hamiltonian H, for
the given configuration of {¢,}.

H,;. is given by Formula (3). For future purposes it
is convenient to rewrite it as:

Fy=H o= {x *[(Vp)*+ p*(Vp)* ]+ p*} dx

~TY Inch (h +2p C;s(qa -ij))
i

(33)

=
£

I
~| 6

oF 2p
(o= _éh_l._th [? cos{Q xz"‘@f)]

Distribution function of phases
at local minimum in nearly uniform

K

oo

The behavior of the magnetic susceptibility y=
o*F . :

T different at different times of observation.

Let’s first consider y in the region where t,<t<t,

(for quasiequilibrium I, see the end of the previous

section). Inserting Formula (33) for F we obtain:

¢ [+ (20 Coslo,+ )
= (o (e 4

(42)
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Slowly time-dependent behavior at 7 < r < ¢

to ~ exp (Ey/T) ~ exp [(T/v)*"] fy ~ exp oy /1)
One of the major characteristics: dissipative response
(0;7 = sign [(cos (¢, + Ox))]

wT(E)
L+ [wr (E)P

]
Im y(w) ~ ?j dE dA R(E, 4) N(E) sech? %

7(E) ~ e®T E isthe free-energy barrier between two states

A is the energy difference between these states

R(E, A)isthe joint probability density for barriers E and asymmetry A

N(E) ~ &E)X(E) 'Sthenumber of spins that flip in the course of the transition

between two metastable states .
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1 E() probability of finding a zero of f(¢' + ®)

within an interval of width &,

v 4 & &\ 23
g P(®) ~ LA (_ﬂ)
: F(®) &
-§ | "y the total number of zeros
v I 1/3
s (;) T3
e .' 0
o The minima of e(¢)
Figure 11 Hierarchical structure of metastable states. constitute a fractal set

with fractal dimension D; =

consider the behaviour of the function Jf(@) = 0e/09 at ¢ —rc}: - ;
where ¢'is any zero of f(¢). The characteristic scale of f(o'+®)is F(P)
F(®)~ E($)/® ~ (8/7)"> X ~y=* g3t
o ’ E~y=23353¢
the scale 8 of 3f/d¢ is determined by the smallest-scale fluctuations with & ~ &.
. ,Y-zxa@&us ’
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wT(E)
L+ [wr(E)]?

1
Im y(w) ~ ?j dE dA R(E, 4)

N(E) ~ HE)X(E, ~ (E/y)*”

1

TZH]SEI;"S

Thus the linear density of relaxation modes with barriers in the interval
(E, E+dE) is given by

M(E) ~ X(E) = X($(E)) ~ y SEVS

d (M(E) dE
W(E) dE ~ dE(X(E)) Ay ™ (3.2.16)

characteristic scale of A is of order E, so that j d4 R(E, A) sech? % ~ W(E)

Combining all above estimates:

dE wr(E) i
Im x(w) ~ ] E W(E)N(E) X [m’r(E)]z e (T In m-]}m!
T4.r"5
In the time domain: c<(?) ~ (T1n 175

¥ (t) = - (1/T) dC(t)/dt (t>0)  Fluct-diss. relation

A

N(E) sech®* —.
20

T
E
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What did we learned ?

1D Ising spin glass with long-range interaction can
be described by slow phase variable

Free energy relief in terms of this variable has fractal
structure whose parameters can be estimated

Upon temperature decrease, more and more fine
tree-like structure develops

Relaxation is logarithmic in a broad range
of time-scales
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5 problems to solve

1. Generating functional (defined in slide 7) and corresponding action

02 1ée k? /8212 1
— d
& 5{5@2 [ﬂx+4ﬁﬁ (ﬁ@)]} sp3c 7

refer to the free energy 8>n((p) defined for the recursion > from

the left end of the chain to the reference site n
Actually one should consider the sum € (@) =€ (@) +€° (¢)

of two parts of free energy since this is the physical free energy
in the middle of the chain

The problem:

a) to produce scaling estimates similar to those

presented in slides 10-11, but the total en((p) :
b) to check if the distribution of zeros of the function de (¢)/d¢
is the same as was derived for d8>n((p)/d(p (slide 13) ; if it is not

the same, to derive the correct one. Slide 19



2. Imaginary part of response Im y(®w) was calculated (slide 17)
assuming Gibbs distribution for different metastable
states, each of them defined by some minimum of function

en((p). However, this assumption of full equilibrium is not

valid if aging dynamics on timescales t 1is considered

a

Namely, thermodynamic Gibbs distribution will be established
for modes separated by energy barriers E << T In (t/t),

whereas modes with barriers E>> TIn (t /t ) will be populated

just randomly. As a result, function 1/cosh* A/2T) in the integral
on slide 17 should be replaced by some non-equlibrium function,

dependent on the value of ta

The problem: to find (approximately) this non-equilibrium
and non-stationary distribution function for the range of
E ~ TIn(t/t) and then calculate aging part of the

response function Im y(m) .
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3. Simulate numerically this 1D spin glass model
(for example, via Monte-Carlo method); check if the fractal
structure of low-free-energy minima does actually exist;
find overlap distributions and other characteristics.
First step: to choose relevant range of the parameters

(Q,c,x) , number of spins N, temperature T

4. “Intermediate” numerical approach: try to simulate random
functions &(@,x) with probability distribution defined by the
action S_ (slide 19) and check the estimates | proposed

5. Consider quantum version of the same Ising problem:
add to the Hamiltonian a transverse-field term FZi Gix

with relatively small I'<< T and try to derive an

effective action in terms of the phase variable ¢ .

What happens then to the fractal structure of energy
valleys described on slide 13 ? Will quantum parameter
[ provide some low cutoff effective in the T=0 limit ?
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