(Ising SG to be discussed here)

Critical hierarchy of modes in 3D spin glasses
Lecture based on L.Ioffe & M.Feigel'man results (1985-1990) + new analysis
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Sov. 3¢l Rev. A, Phys. Vol. 15, 1990, pp. 1-250

1. Thouless-Anderson-Palmer method for a finite-range Spin Glass:
selection of slow modes and eigenfunctions of the J ; matrix

2. Effective Hamiltonian of slow modes: parity-based classification
3. Formation of super-paramagnetic clusters and their interactions

4. Discrete RG transformation and critical hierarchy



TAP method for a finite-range Spin Glass: selection

of slow modes and eigenfunctions of the Jij matrix

D.Thouless, P.Anderson & R.Palmer 1977:
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Generalization for finite large Z (coordination number)
ij = cK (r; —rj) f d3‘f'K(?') = Jg Z = CK_BKZHK(?)FZ d’r2 > 1
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e ~ 7
E_ is the mobility edge

p(E) ~ exp [— a,(e/ex)™"].

Tail of localized states




3D finite-range hopping: analysis of the spectrum
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Expansion over eigen-modes for finite large Z

m= 2 a) +om = Y ah)+ ) a4.0)
' ' ! h, = ; a4 (D),
where we denote “'slow’’ modes by a subscript A and “‘fast™ ones by .
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The notation: rﬁf:ﬁ,-"_: means the “normally ordered product”,
aresult of the orthogonality between (/) and g, /)

‘m?

« — 3 2 (i 2
r=mS—=3m Xy (i) <a’ >




Hierarchy of Interactions and Superparamagnetic Behaviour

“{E start from the paramagnetic region 1> 732 7= 2 Es
T R, 5 R here e, = E
Aan} = P (77— &)ay wheree, = E, — 2.
A

at any 7 some modes with ¢, > 7° are present that are unstable in the linear approximation,

At 7 3> 7, the density of these modes i Is very srnall moreover, they are e\ ¥
ple) ~ exp [— ':]( ) ]

€

well localized so that intermode interactions nngmatmg

from nonlinear terms in F[m] can be neglected, whereas intramode I0e) o B,

nonlinearity should be taken into account
Local “clusters”
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At lower temperatures (7 = 7,) the number of modes Z interacting
strongly with a given condensed mode increases and becomes of order

unity (Z ~ plegey*(eg) = O (1)

The crucial feature of the large-Z spin-glass model is that the inter-
action terms can be divided into two types whose magnitudes are
strongly different. The terms of the first type depend on the absolute
values of all the amplitudes a, only; for example

atal D YRG)

Only these terms appear to be relevant at r ~ 7, The terms of the
second type depend on the relative signs of the amplitudes, for example

aya,a’ ZJ NOIAOYHO)

These terms are small in comparison with (4.2.4) owing to the random
oscillating nature of the eigenfunctions , (i) NY2 times smaller

A, ¥
For modes withe, ,, = ¢, we get N, ,, ~ Fe) ~ 22 > |
At 7~y interactions of the second type are Z times smaller



How it looks for usual phase transition
1 > r=e)al + Tl 3 940)
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Macroscopic condensation occurs when T reaches
mobility edge position €.
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All types of intermode coupling are
of the same order of magnitude



Super-paramagnetic behavior at lower temperatures, |t >> T

We neglect all terms with odd powers of a amplitudes and obtain
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intermode interaction terms change the coefficients of the terms '
quadratic and quartic in @, in the effective single-mode energy F(a,).
To study the influence of mode-mode coupling, we introduce the mole-

cular field B,,

valid for Z >> 1
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C decreases and tends to approach zero upon T decrease



6=vD, Current knowledge of the exponents:

Finite-size scaling and multifractality at the Anderson transition for the three Wigner-Dyson
symmetry classes in three dimensions

| | L up to 100
PHYSICAL REVIEW B 91, 184206 (2015) Laszlo Ujfalusi and Imre Varea'

Orthogonal ensemble:

D = 1.23] v =1595 > 6=1096
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A word of caution: we need to average ¥, = [E (/)]
instead of the usual IPR L z,bf (7)

which is used to define D,
V, is determined by the most extended states with small IPR
Thus we need the value of D_ defined by typical IPR

rather than average ones
It leads (Cuevas, Kravtsov 2007) to slightly large value of D2



Assuming 0 =2 we find a similar solution
for self-consistency equation:

(Ti) o In (1/0)

The borderline between
condensed and uncondensed
modes asymptotically
approaches mobility edge



Effective Superspin Interaction and Hierarchy of
Superparamagnels

Now we should include “odd” terms in the Hamiltonian of slow modes
These terms are smaller than “even” ones, but they also grow

with T and  decrease and eventually become relevant
at some temperature when TO —T=_-71= fcl

T, is determined by the condition that effective interaction

between signs of amplitudes a _i.e. - alla |
start to interact strongly |
= — — Z 1,000,
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Signs of Iw are random 1i.e. this interaction is also of SG-type



Interaction of “superspins”: major parameters
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The couplings /,, are random and weakly (at most) cor:
related owing to the random character of the eigenfunctions ¢,(/) and

the ““background’’ field é6B;.

The effective strength of the o, interaction is characterized by the parameter

= (we put it = 1)
2 _ 2 2
J1 =2, 1 A Z1 AL That is analog of J 02 = ZJ, Jzij

The main contribution comes from the largest-scale ﬁl\\odes withe, — & = £ — ¢,

G fﬁo

The corresponding eigenfunctions y,(i) overlap

strongly, with mean coordination number Z >> 1
/
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Estimate the values of I'Y and 1® at 1~ T

CL% ~ 2 _TO V( €N 7 EO) ~ 24/3 V(E)\ ~ 60) ~ 22

|70
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I(l)ML contains sign-alternating sum over ~ Z® sites > Z factor

I(z)ML contains sign-alternating sums over Z°sitesiand Z

sites j (which are coupled to1)

Combining all factors we find for T ~ T, 7 ~ 71 1(2) ~ 2_5/6

At lower T's both sums grow as powers of C:
J1(¢) ~ max[Z-1¢~9%, Z75/6¢—¢']



Assume by now that the first term I is the major one (to be checked!)

Effective coupling strength J_ becomes of the order of unity at

C:Cl NZ_l/qb

Effective coordination number at ¢ = (; is Z ~ / K/ ¢

gt —. ln% ~ (7/710)%

T1 ~ T0 _lnqbZ > T0

The key point: is the ratio
K/¢

larger than wunity ?

If /¢ >1 then Z >/ P New SG problem is the same type as original one




Sequence of fractal clusters that grow
upon temperature decrease

T _TH_H Zlnﬁ Z)
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T T T T
/ g 2 1 0
Accumulation point Freezing of superspins
for the sequence of T of the first level

\/
Freezing of superspins

of the second level



Local magnetization is a function of “super-
spins” that belong to overlapping
fractal clusters

m; = E a (i) \ : /
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With T decrease, the system
inevitably goes out of equilibrium
as barriers for largest condensed

modes grow above T In(t /t )



Conclusions

Spin glass with large Z may present very special phase
transition scenario with hierarchy of fractal clusters,
instead of usually presumed scaling behavior.

To prove (or disprove) such a scenario, a careful analysis of
wave-function statistics near 3D AT is needed.

The same approach can be used for Gauge Glasses
(randomly frustrated Josephson networks)

Generalization for the Quantum Spin Glass problem

seems to be possible



Alternative scenario

If /¢ <1 then Z< 7

In this case effective coordination number drops during each step
of RG transformations and critical behavior is the same as in the
Spin glass model with Z ~ 1

The values of the exponents K and ¢ are to be determined
by the statistics of critical eigenfunctions near Anderson transition
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