<u>Летняя научная школа</u> <u>"Нанофизика низких температур"</u> Фонд Дмитрия Зимина «ДИНАСТИЯ»

1

Валерий Рязанов

Заведующий лабораторией сверхпроводимости Института физики твердого тела РАН

Вт. 21 августа 2007, 16:30 - 18:00

Гибридные структуры сверхпроводник-металл

Лекция 2

План лекции

- Андреевское отражение на FS-границе раздела
- Кросс-андреевское отражение и ко-туннелирование
- π-контакты-джозефсоновские переходы с инверсией разности сверхпроводящих фаз
- Мезоскопический SNS π-контакт
- Осцилляции параметра порядка вблизи SF-границы
- Джозефсоновские SFS π-контакты
- Периодическая зависимость крит тока от толщины F
- Возвратная температурная зависимость крит тока
- Спонтанный магнитный поток в сетках π-контактов
- Возможные приложения π-контактов

Обменное зонное расщепление. Эффект гигантского магнетосопротивления в туннельных FIF контактах

Подавление андреевского отражения на FS-границе

V.V.Ryazanov

k

k_x

Измерение спиновой поляризации с помощью SF-контактов

V.V.Ryazanov

Нелокальное кросс-андреевское отражение

π-контакты

В кольцах с л-контактами возникают двукратно-вырожденные состояния

V.V.Ryazanov

▲Ψ(x)

Ψ

Типы π - контактов

Мезоскопические SNS π -контакты

Baselmans et al эксперимент (Nature 397, 43, 1999)

8

Неоднородные состояния в магнитных сверхпроводниках

A.I.Buzdin. Rev. Mod. Phys. 77 (2005) 1321 LOFF-состояния: Ларкин, Овчинников (1964) Fulde, Ferrel (1964)

Однородное состояние: F=a $|\Psi|^2 + \gamma |\nabla\Psi|^2 + (b/2) |\Psi|^4$ однородный равновесный параметр порядка $|\Psi|^2 = -a/b$

Учет парамагнитных эффектов за счет H, E_{ex} (распаривание ~ μ_B H)

При больших Eex/T коэффициент γ -отрицателен, т.е. градиенты пар. порядка выгодны! Необходим учет следующих членов в разложении: F=...+(n(H,T)/2) $\nabla^2 \Psi$ ²

Минимизация дает неоднородное состояние с $\Psi = \Psi_0 \exp(iQr)$,

где Q – волновой вектор, *ненулевой импульс пары* (в чистом пределе) a Ψ - $\gamma \Delta \Psi$ +($\eta / 2$) $\Delta^2 \Psi$ =0 a = - γQ^2 - ($\eta / 2$) Q^4

а= $\alpha(T_{ci}-T_{cu}) = \gamma^2/(2\eta)$ для максимальной T_{ci}

Спаривание с ненулевым импульсом вблизи SF-границы

10

Андреевские уровни в SFS переходе

Эффект близости в SF-структурах

 $\psi(\mathbf{x}) = \psi_0 \exp(-\mathbf{k}\mathbf{x}) = \psi_0 \exp(-\mathbf{x}/\xi_N)$ Время распаривания $\tau \sim \hbar/k_B T$ $\xi_N \sim (D\tau)^{1/2} \sim (\hbar D/k_B T)^{1/2}$

Буздин, Булаевский, Панюков *Письма в ЖЭТФ 35 147 (1982)* Буздин, Вуйчич, Куприянов *ЖЭТФ 101 231 (1992)*

Комплексная длина когерентности Период пространственных осцилляций

SN-граница ψ(x) ~ *exp(-k_Nx),* k_N = 1/ξ_N -– действительная

Диффузный случай ξ_N =[ħD/(2πk_BT)]^{1/2}

 SF-граница

 ψ(x) ~ exp(-k_Fx),

 k_F - комплексная !

 k_F = k_{F1} + i Q

 Q ~ E_{ex} / v_F (чистый сл.)

 ξ_F = 1/k_F - комплексная длина

 когерентности

 $\xi_F = (\hbar D/i E_{ex})^{1/2} (E_{ex} >> k_B T)$

 $\psi(x) \sim exp(-x/\xi_F) \sim exp(-x/\xi_{F1}) \cos(-ix/\xi_{F2})$ ξ_{F1} – длина затухания, $\lambda_{ex} = 2\pi\xi_{F2}$ – период пространственных осцилляций Co, Fe, Ni: $\xi_{F1} = \xi_{F2} = (\hbar D/E_{ex})^{1/2} < 1 nm$ V.V.Ryazanov

Зависимость критического тока от температуры

Oboznov, Bolginov, Feofanov, Ryazanov, and Buzdin, PRL 96, 197003 (2006)

SFS слабые связи со слабыми ферромагнетиками

 $x=0.52-0.57; T_{Kюри}=20-150 K; d_F=15-30 nm;$

Комплексная длина когерентности в ферромагнетике при $E_{ex} \sim k_B T$

Джозефсоновские характеристики (II)

После намагничивания

$$I_{\max} = I_c \left| \frac{\sin(\pi \Phi / \Phi_0)}{\pi \Phi / \Phi_0} \right|$$

Зависимость π -0 перехода от величины обменной энергии ферромагнетика

V.R., Oboznov, Prokofiev et al, Journ. Low Temp. Phys. 136, 385 (2004)

Cu_{0.48} Ni_{0.52}, E_{ex1} $\xi_{F2} = (\hbar D / E_{ov})^{1/2}$ d =27nm $d_{F,\pi^2} \approx (7/8) \lambda_{ex} = (7/4) \pi (\hbar D/E_{ex})^{1/2}$

Сравнение с результатами на SF-, бислоях

 $\mathbf{d}_{\mathrm{F,min}} \approx \lambda_{\mathrm{ex}}/4$

V.V.Ryazanov

T (K)

 $\mathbf{E}_{aad} \leq \mathbf{E}_{aad} \leq \mathbf{E}_{aad}$

Cu_{0.47} Ni_{0.53}, E_{ex2}

Cu_{0.43} Ni_{0.57}, E_{ex3}

d_=22nm

=15nm

0.5

0.4

0.3

0.2

0.1 0.0

1.0

0.8

0,6

0.4

0,2 0.0

3.0

2,5

1.5

1.0 0.5 0.0

 $j_{\,\rm c}\,\,{\rm Acm}^2$ 2,0

, A/cm²

j _e , Akm²

Температурная зависимость толщин 0-π-переходов (эксперимент и теория)

Nb-Cu_{0.47}Ni_{0.53}-Nb $d_{F}=9-24 \text{ nm}$ $E_{ex} \sim 850 \text{ K} (T_{Curie}=70 \text{ K})$? $\xi_{F1,2} = \sqrt{\frac{\hbar D}{\sqrt{(\pi k_{B}T)^{2} + E_{ex}^{2}} \pm \pi k_{B}T}} \simeq \sqrt{\frac{\hbar D}{E_{ex}}} (1 \mp \frac{\pi k_{B}T}{2E_{ex}})$

"Температурно-зависящее" рассеяние с переворотом спина Buzdin in Oboznov et al, Phys. Rev. Lett. 96, (2006).

$$1/\xi_{F1} = k_1 = \frac{1}{\xi_F} \sqrt{\sqrt{1 + \left(\frac{\omega}{E_{ex}} + \frac{\hbar}{E_{ex}\tau_s}\right)^2} + \frac{\omega}{E_{ex}} + \frac{\hbar}{E_{ex}\tau_s}}} \qquad \xi_{F1} \approx 1.37 \text{ nm}$$
$$1/\xi_{F2} = k_2 = \frac{1}{\xi_F} \sqrt{\sqrt{1 + \left(\frac{\omega}{E_{ex}} + \frac{\hbar}{E_{ex}\tau_s}\right)^2} - \left(\frac{\omega}{E_{ex}} + \frac{\hbar}{E_{ex}\tau_s}\right)}} \qquad \xi_{F2} \approx 3.5 \text{ nm}$$

Прозрачная

$$\begin{pmatrix} \omega + iE_{ex} + \frac{\hbar\cos\Theta}{\tau_s} \end{pmatrix} \sin\Theta - \frac{\hbar D}{2} \frac{\partial^2 \Theta}{\partial x^2} = 0$$
 Эффективная spin-flip
G = cos $\Theta(T)$; F = sin $\Theta(T)$ Эффективная spin-flip
частота $\Gamma(T) = \cos \Theta(T)/\tau_s$;

SF- граница

Технология приготовления SFS переходов

Послойная технология

1: Осаждение нижнего Nb слоя

3: Вскрытие окна в SiO

4: Осаждение верхнего Nb слоя

 $5\mu m \times 5\mu m - 50\mu m \times 50\mu m$

1: Осаждение Nb-CuNi-Nb трехслойки

Трехслойная технология

2: Ионное травление Nb+CuNi, осаждение SiO, lift-off

3: Осаждение верхнего Nb слоя

$10\mu m \times 10\mu m$

Прямое наблюдение спонтанного магнитного потока в джозефсоновских сетках с π -контактами

совместно с С.Фроловым и Д.Ван Харлингеном (Урбана, США)

Полностью фрустрированная джозефсоновская сетка

Джозефсоновские сетки

unfrustrated

fully-frustrated

checkerboard-frustrated

V.V.Ryazanovfully-frustrated....

2 x 2

6 x 6

Визуализация спонтанного потока в сетках π -контактов

Frolov, Stoutimore, Crane, Van Harlingen, Oboznov, V.R. et al, accepted to Nature Physics

Фазово-чувствительные эксперименты Интерферометры

Комплементарная джозефсоновская логика

E. Terziogu, M.R. Beasley, IEEE Trans. On Appl. Supercond. 8, 48 (1998) $j = j_c \sin(\varphi + \pi)$

V.V.Ryazanov

 f_{model}^{25}

RSFQ-логика, использующая фазовые *π*-инверторы

A.V.Ustinov, V.K.Kaplunenko. Journ. Appl. Phys. 94, 5405 (2003) **RSFQ-**логика: Rapid Single Flux Quantum logic $L_J = \Phi_0 / (2\pi I_c)$ $\tau \sim 1 / (I_c \mathbf{R})$ Традиционная RSFQ-ячейка in π -RSFQ -ячейка $LI_c > \Phi_{\theta}$ $L \rightarrow 0$ out 1 out 2 Fluxon memorizing cell π-RSFQ –триггер

Прямое измерение токо-фазового соотношения

Frolov, Van Harlingen, Oboznov, Bolginov, V.R., PR B 70, 144505 (2004).

dc SQUID метод: J.R. Waldram et al., Rev. Phys. Appl. 10, 7 (1975)

Токо-фазовый эксперимент

$$\Phi_e = L I \qquad \varphi = 2\pi \Phi/\Phi_0$$
$$I = \Phi/L + I_c \sin(2\pi \Phi/\Phi_0)$$

Инверсия токо-фазового соотношения

V.V.Ryazanov

II

Nb-Cu_{0.47}Ni_{0.53}-Nb $I=I_{c1}\sin\varphi+I_{c2}\sin(2\varphi)+...$ $10 \text{ x} 10 \text{ } \mu\text{m}^2$ CNT-10(1) T = 3.24 K v = 7 MHz T=3.24 K step height = 14.49 nV 30/01/07 1.6 ۷, vΦ₀ 0 π 1.4 d_F=7.2 nm 1.2 c, mA 1.0 0.2 0.6 0.8 1.0 I, mA 0.8 0.6 CNT-10(1) CNT-10(1) 30/01/07 T = 3.11 K = 7 MHz T=3.11 K T_= 3.11 K 0.4 step heiaht = 14.49 nV 30/01/07 $T_{\pi} = 3.1$ νΦ > 0.2 0.0 3.3 3.4 3.2 3.5 2.8 2.9 3.1 3.6 3.7 3.0 Т, К 0.8 0.4 0.6 l mA $I=I_{c2}sin(2\phi); I_{c1}=0;$ CNT-10(1) $V_{\varphi} = \frac{\hbar}{2e} \frac{d\varphi}{dt} = \frac{\hbar}{2e} 2\pi f = \Phi_0 f$ T = 3.05 K I_s† = 7 MHz step height = 14.49 n∨ 30/01/07 νΦ T=3.06 K $V_{2\varphi} = \frac{\hbar}{2e} \frac{d\varphi}{dt} = \frac{\hbar}{2e} \pi f = \frac{\Phi_0}{2} f = \frac{V_{\varphi}^2}{2}$ () 2π 0.2 04 0.6 0.8 1.0 I, mA

V.V.Ryazanov

Обнаружение 2ф-компоненты (sin(2ф)). Ступени Шапиро

Ф₀ /2-периодичность Фраунгоферовской зависимости

