

Эффекты спинового упорядочения в квазиодномерных органических соедиениях

А.В. Корнилов, В.М. Пудалов

✓ Волна спиновой плотности, SDW
 ✓ Индуцированная полем SDW
 ✓ Фазовый переход SDW-металл
 Rapid oscillations in the spin-



ordered state Phase-mixing in the vicinity of the phase transition between PM, SDW, and superconducting states

(TMTSF)<sub>2</sub>PF<sub>6</sub>





Charge transfer:

1 electron/unit cell  $\Rightarrow$  anyon <sup>1</sup>/<sub>2</sub> hole left on (TMTSF) molecules.

Dimerization  $\Rightarrow \frac{1}{2}$  - filled band (1 carrier/10<sup>3</sup> Å)

#### 1. Quasi-1D compound: (TMTSF)<sub>2</sub>PF<sub>6</sub>

Q-2D, 3D Metal Q-1D AFM SDW: Insulator

Superconductor T<sub>c</sub>=1.2K (p-wave)

FISDW: qasi-2D state with quantized nesting vector





#### 3D Cartoon of the idealized Fermi surface



Bandwidth:  $4t_a = 1eV \text{ along } a$  $4t_b = 0.1eV \text{ along } b$  $4t_c = 3 \text{ meV along } c$ 

#### 2. One-dimensionalization in Magnetic Field

$$\mathcal{E}(k_{x},k_{y}) = -2t_{a}\cos k_{x}a - 2t_{b}\cos k_{y}b$$
Linearizing around  $K_{F}$ :  
 $\approx v_{F}(|k_{x}|-k_{F}) - 2t_{b}\cos k_{y}b$ 
Linearizing around  $K_{F}$ :  
 $\approx v_{F}(|k_{x}|-k_{F}) - 2t_{b}\cos k_{y}b$ 
 $v_{F} = 2t_{a}a\sin ak_{F}$ 
  
 $\frac{\hbar^{2}}{2m^{*}}\frac{\partial^{2}}{\partial x^{2}}\Psi - 2t_{b}\cos\left(ib\frac{\partial}{\partial y} - \frac{eHb}{\hbar c}x\right)\Psi = e\Psi$ 
  
Сдвигает только "центр масс" на  $x^{1} \Rightarrow (x - \lambda bk_{y}/2\pi)$ 
  
1D-equation
$$\frac{\hbar^{2}}{2m^{*}}\frac{\partial^{2}}{\partial x^{2}}\Psi(x) - 2t_{b}\cos\left(k_{y}b - \frac{2\pi}{\lambda}x\right)\Psi(x) = e\Psi(x)$$
  
 $\frac{2\pi}{\lambda} = \frac{eHb}{\hbar c}$  magnetic length
In a magnetic field, dispersion depends on  $k_{x}$ ,  $\varepsilon(k_{x})$ 



Cartoon of the Fermi surface (2D view)



 $\begin{array}{c}
 \pi/b \\
 Q_0 \\
 0 \\
 k_F = \pi/2a \pi/a
\end{array}$ 

$$\varepsilon(k) = v_F(k_x - k_F) - 2t_b \cos(k_y b)$$

Perfect nesting

$$\varepsilon(\mathbf{k}) = -\varepsilon(\mathbf{k} + \mathbf{Q})$$



#### 3. Distortion @ H = 0. Perfect nesting.



Energy gain: $\Delta^2 ln(ε_F/\Delta)$ cost: $\kappa \Delta^2$ 

Metallic state is unstable

#### Imperfect nesting. H = 0



$$\varepsilon(\boldsymbol{k}) = v_F \left( |k_x| - k_F \right) + \varepsilon_{\perp}(\boldsymbol{k})$$
  
$$\varepsilon_{\perp}(\boldsymbol{k}) = -2t_b \cos(k_y b) - 2t_b^{'} \cos(2k_y b) - 2t_c \cos(k_z c)$$

Energy gain:  $\Delta^{m} \ln(\epsilon_{F}/\Delta)$  (m≥3) cost:  $\kappa \Delta^{2}$ Metallic state is stable down to "*T* = 0". This is the state in (TMTSF)<sub>2</sub>PF<sub>6</sub> @ *P*>5.5kbar and *H*=0



**Р-Т** фазовая диаграмма (TMTSF)<sub>2</sub>PF<sub>6</sub> при B=0.

М – парамагнитный метал,
 AF – антиферромагнитный изолятор (SDW),
 SC - сверхпроводник

#### 4. Field induced SDW (FISDW)

Susceptibility  $\chi$  vs distortion wave vector Q

In magnetic field:

 $Q_0 = 2k_F \pm N2\pi/\lambda$  along a

nesting vectors



#### 4.1. Open and closed orbits in quantized H-field

Landau quantization





#### 4.2. Field-Induced SDW states (FISDW)

$$Q_x = 2k_F - N\frac{eBb}{h}$$



#### "Standard model" (Quantized nesting model): SDW in magnetic field

Distortion + Field



For SDW state to survive, the area in the kspace must be

N (eH/hc)

As the field varies, the  $Q_{SDW}$  must change to keep  $\varepsilon_F$  in the gap

Without a gap at  $\varepsilon_{\rm F}$ , the SDW would collapse, since the energy gain does not compensate the distortion cost

Ideally, n = N (integer)

#### 4.3. FISDW in magnetotransport



Idealized theoretical picture

**Experimental picture** 

## Каскад индуцированных полем состояний с волной спиновой плотности (FISDW)



P.Chaikin et al. (1996)

A.V.Kornilov, V.P. et al *Phys.Rev.* B (2002)

#### FISDW vs QHE in 2D: Similarity and Difference:

#### **FISDW**

$$\rho_{xy}$$
= h/2Ne<sup>2</sup>

 $\rho_{\rm xx} \rightarrow 0 \text{ as } T \rightarrow 0$ 

ρ<sub>xy</sub>(H) doesn't sit on the line
(because n varies with H)

$$\rho_{xy}$$
= h/Ne<sup>2</sup>

$$\rho_{xx} \rightarrow 0 \text{ as } T \rightarrow 0$$

 $\rho_{xy}(H) \rightarrow 0 \text{ as } H \rightarrow 0 \text{ and sits on}$ the classical line H/nc

Plateau-plateau transitions:

1<sup>st</sup> order (no linear transitions), step-like changes in  $\rho_{xy}$ as  $T \rightarrow 0 \& 1/\tau \rightarrow 0$ 

Each transition has its own  $T_{\text{FISDW}}(N,H)$  and free energy  $F_{\text{FISDW}}(N,H,T)$ 

continuous QPT, linear transitions in  $\rho_{xy}$ as  $T \rightarrow 0$  &  $1/\tau \rightarrow 0$ 

Transitions are equivalent

## Temperature evolution of $\rho_{xx}$



 $\rho_{xx} \rightarrow 0$  as  $T \rightarrow 0$ 



#### 4.4. N = 0 FISDW phase



А.Корнилов, ВП и др. Письма ЖЭТФ (2004)

#### P-B-T phase diagram of (TMTSF)<sub>2</sub>PF<sub>6</sub>



P.Chaikin et al. (1996)

A.V.Kornilov, V.P. et al *Phys.Rev.* B (2002)

4.5. Revision of the "Standard model"

Q: Whether the FISDW transitions are always of the 1<sup>st</sup> order?

No, this is the case only at low T's



А.Корнилов, ВП и др. *Phys.Rev.B* (2002)

#### Revised FISDW phase diagram

#### Lebed' revised model for FISDW (PRL 2002):

#### Low-T domain:

- quantum FISDW
- 1<sup>st</sup> order transitions
- hysteresis
- Jumps in the nesting vector

#### High T-domain:

- o Semiclassical FISDW
- o Crossovers
- o No hysteresis



А.Корнилов, ВП и др. Phys.Rev.B (2002)

#### Revised QN model



#### R(T) maxima also occur at the same $T_0(H)$ , indicating its fundamental meaning



А.Корнилов, ВП и др. *Phys.Rev.B* (2002)

#### Theory conclusion (to be verified experimentally)



QHE may exist only in the quantum FISDW domain, for  $T < T_0(N,P)$ It can't be observed, e.g., for N > 6 at this pressure, 7kbar

#### 5. "Rapid Oscillations" in (TMTSF)<sub>2</sub>PF<sub>6</sub>



#### Загадка "Быстрых осцилляций" (RO) в фазе изолятора



#### Problems to be addressed:

- Как/откуда возникают "Rapid Oscillations" (RO)?
- Куда/почему RO исчезают ?
- Как RO связаны со спиновым упорядочением ?

### 5.1. Сферическая камера высокого давления – источник новых экспериментальных данных!



А.Корнилов, В.П., ПТЭ (1999)

#### 5.2. Existence of RO at different pressures



## 5.3. Existence of RO in different magnetic field ranges



#### 5.4. Existence of RO at different temperatures



#### 5.5. Existence of RO in various FISDW phases





- RO in (TMTSF)<sub>2</sub>PF<sub>6</sub> do not exist in the metallic state
- RO are intrinsic to the Spin-Ordered State

#### 5.6. 1/B periodicity of oscillations:



in the apparent insulating state there exist "closed orbits" ?

## 5.7. Temperature dependence of the monotonic (background) resistance



Looks like the delocalized states really exist

#### 5.8. Rotation of the sample in magnetic field



#### 5.9. Temperature dependence of the RO



RO disappear with lowering *T*, however their frequency and phase are not changed

## 5.10. Rotation of the sample in magnetic field (Low T)



Despite weakening of the RO

neither size nor orientation of the closed orbits vary with T

With lowering T:

Closed orbits change neither size, nor orientation. However, RO disappear !

Conjecture: the delocalized states are depopulated in favor of the localized ones

## 5.11. Back to the temperature dependence of resistance, now with an additional $\sigma_{met}(T)$ dependence



#### Другой способ эмпирического описания зависимости *R(T)*



#### The main experimental results

(1) RO are intrinsic to the **spin-ordered state**, solely

(2) 1/B periodicity of RO and "imperfect" insulating behavior of  $R(T) \Rightarrow$  the existence of **delocalized states (closed orbits) on** the FS

(3) The pockets are **flat and lie in the** *a-b* **crystal plane** 

(4) The delocalized states are **depopulated** in favor of the localized ones, as **T** decreases

5.12. Две волны спиновой плотности

A.G.Lebed,

Physica Scripta, 1991



Q<sub>1</sub> – обусловлен процессами переброса

$$Q_1 = Q_0 - \frac{2\pi}{a} = Q_0 - 4k_F \qquad \frac{4t_b}{\pi ebv_F} = 286T; \frac{t_b = 200K}{v_F = 1.11*10^5 m/s}$$



 $Q_1 = Q_0 - \frac{2\pi}{a} = Q_0 - 4k_F$ 

$$\frac{4t_b}{\pi e b v_F} = 286T; \ \frac{t_b = 200K}{v_F = 1.11*10^5 m/s}$$

#### Conclusions

 Причина возникновения RO: сосуществование 2-х SDW
 Причина исчезновения RO: ослабление второй SDW (ослабление процессов переброса)

### 5.13. Когерентное квантовое движение (ПФ)

вдоль а





#### Более подробно про RO см. в:

1. A.V. Kornilov & V.M. Pudalov, in: *The Physics of Organic Superconductors and Conductors* (Springer-Verlag, 2007)

2. Kornilov A.V., Pudalov V.M. et al. Rapid Oscillations in (TMTSF)2PF6 , *J. Low Temp. Phys.* **142**(3/4), 305 (2006)

3. A.V. Kornilov, V.M. Pudalov, A.-K. Klehe, et al., Origin of Rapid Oscillations in Low Dimensional (TMTSF)2PF6, cond-mat/0510666, *Phys. Rev. B*, **76**, 045109 (2007)

4. A.V. Kornilov, V.M. Pudalov, О существовании быстрых осцилляций в различных фазах волны спиновой плотности в (TMTSF)2PF6, *Письма в ЖЭТФ*, **84**(11), 744 (2006).

6. Фазовое расслоение на границе сверхпроводящей, антиферромагнитной и парамагнитной фаз в (TMTSF)<sub>2</sub>PF<sub>6</sub>

Phys. Rev. B 65 (2002)

JETP Letters 78 (1), (2003)

Phys. Rev. B 69 (2004)

Письма в ЖЭТФ (2004)

## При изменении температуры, давления и магнитного поля

✓ квантованный холловский проводник каскад FISDW- переходов 1го рода,

- ✓ антиферромагнетик (SDW),
- ✓ сверхпроводник (триплетная СП),
- 🗸 изолятор,
- ✓ полупроводник,
- металл,





**Р-Т** фазовая диаграмма (TMTSF)<sub>2</sub>PF<sub>6</sub> при B=0.

М – парамагнитный метал,
 AF – антиферромагнитный изолятор (SDW),
 SC - сверхпроводник

#### 6.1. Фазово-неоднородное смешанное состояние



А.В. Корнилов, В.М. Пудалов, и др. *Phys. Rev.* В (2004); *Письма в ЖЭТФ* (2003)

#### Фундаментальная проблема:

### Взаимная игра между AF и PM состояниями, характер фазовых переходов SDW $\Leftrightarrow$ Metal $\Leftrightarrow$ SC



<u>Фазовые переходы</u> могут происходить между:

• Однородными состояниями

• Смешанными гетерофазными состояниями



Однако, более ранние результаты по <sup>77</sup>Se ЯМР указывают на размытый переход SDW-M

Возможные двухфазные состояния:

- Микроскопически-смешанное, SO(5) ?
- Макроскопическисмешанное с
   пространственным
   разделением фаз ?

Azevedo, Shirber, Engler Phys Rev B (1983)



FIG. 4. Spin-lattice relaxation rate (top) and absolute sus ceptibility (bottom) of <sup>77</sup>Se vs pressure at 105 kOe and 4.02 K. The lines are guides for the eye. x = 1.0 corresponds to all the <sup>77</sup>Se in the sample.

6.2. Традиционный способ изучения фазовых переходов:

(i) Изменение T @ P = Const;

(ii) Изменение P @ T = Const.



### 6.3. Схематическая фазовая диаграмма для несверхпроводящей области, *T* ≥1.14К.



*R(B)* в фазе *A*F-изолятора (траектория *1*):



# *R(B)* в металлической (М) фазе (траектория 3):



## 6.4. Вариации *R(В)* в случае пересечения границы РМ-АF (траектория *2)*



## dR/dB при пересечении границы M/AF (траектория 2)



#### 6.5. *dR/dB* при разных температурах



#### 6.6. Эффекты предистории



#### 6.7. Фазовое расслоение в отсутствии поля

Сопротивление в точке **В** слегка уменьшено, из-за остаточных включений хорошо-проводящего РМ состояния





Однородное состояние (точка D) восстановлено после свипа поля до 16T и обратно до 0.

#### Основные результаты:

- Гистерезис в *R(B)* и d*R/dB*.
- Эффекты предистории: *R(B)* зависит от траектории
- Признаки миноритарной РМ (AF) фазы заметны довольно далеко от критической точки

Гистерезис – стационарный и хорошо воспроизводимый эффект Гистерезис и эффекты предистории наблюдаются только вблизи PM-AF-SC границы



- ✓ Фазово-неоднородное состояние спонтанно возникает вблизи границы раздела М-SDW-Sc фаз.
- ✓ В этом состоянии основная фаза содержит включения миноритарной фазы.
- ✓ Однородное состояние системы восстанавливается вдали от границы раздела.

Microscopic mixing vs macroscopic phase separation

The hysteresis, its smooth disappearance, and history effects are inconsistent with:

- a microscopically mixed state and with

 - a homogeneous "overcooled" / "overheated" state (1<sup>st</sup> order PT)

#### Besides, this is a 2<sup>nd</sup> order Transition !

7. Резюме всего того, что рассказано

Новая фазовая граница: квантовая и квазиклассическая в области FISDW

Причина возникновения RO: Сосуществование двух волн спиновой плотности (SDW)

≻ Причина исчезновения RO при T→0: ослабление второй волны SDW (ослабление процессов переброса)

≻Когерентный транспорт вдоль а (и некогерентный по с). Восстановление когерентности по оси с при T→0

Спонтанное образование смешанного состояние вблизи границы раздела М – SDW – Sc

#### Спасибо за внимание!