Smile Gaps and Topology in the Andreev Spectrum of Superconducting Junctions

<u>Wolfgang Belzig</u>¹, Johannes Reutlinger¹, Tomohiro Yokoyama^{2,3}, Leonid Glazman⁴, and Yuli V. Nazarov²

Content

 M_1 levels

- 1. Introduction: proximity effect and local density of states
- 2. The minigap and the smile gap in a ballistic cavity Josephson junction
- 3. Minigaps and smile gaps in a 4-terminal Josephson junction ring and topological protection of the spectral properties
- Universality of level statistics at the smile gap edge

 M_2 levels

 φ_0

Ø

 S_3

 S_0

 S_1

 S_2

smile gap

 M_3 levels

 $arphi_3$

Ø

1) Introduction, History, Experiments

Tunnel model

 $\Omega_N \approx \Gamma_N = \hbar / \tau_N$

This appears to be a general result.

[McMillan, Phys. Rev. 175, 573 (1968)]

<u>Quasiclassical model (diffusive)</u>

[Golubov, Kupriyanov, J. Low Temp. Phys. **70**, 83 (1988)]

The local density of states

- Continuous transition from a superconducting to a normal density of states
- Distant-dependent gap feature

S. Gueron, H. Pothier, N. Birge, D. Esteve, and M. Devoret, Phys. Rev. Lett. 77, 3025 (1996).

The Minigap

Mesoscopic energy scale: Thouless energy!

$$E_{Th} = \frac{\hbar D}{L^2}$$

e.g. Belzig, Bruder, Schön, Phys. Rev. B (1996)

Further works (small collection):

- Influence on transport [Volkov, Zaitsev, Klapwijk, Physica C **210**, 21 (1993)]
- Reentrant conductivity [Nazarov, Stoof, PRL 76, 823 (1996)]
- Phase dependence [Zhou, Charlat, Spivak, Pannetier, JLTP **110**, 841 (1998)]
- Mesoscopic fluctuations [Ostrovsky, Skvortsov, Feigel'man, PRL 87, 027002 (2001)]
- Quantum fluctuation origin [Micklitz, Altland PRL 103, 1 (2009)]

Minigap beyond the dirty limit

Review: Beenakker, (2005)

Pilgram, Belzig, Bruder, PRB (2000)

Lodder, Nazarov PRB (1998)

The phase-dependent minigap

Clear observation of the minigap and the phase dependence

H. Le Sueur, P. Joyez, H. Pothier, C. Urbina, and D. Esteve, Phys. Rev. Lett. (2008).

2) Proximity density of states of a cavity at <u>large</u> Етн: The "smile" gap

Phase

J. Reutlinger, L. Glazman, Yu. V. Nazarov, and WB Phys. Rev. Lett. **112**, 067001 (2014) Phys. Rev. B **90**, 014521 (2014)

Method: Quasiclassical Greens functions (Quantum circuit method)

Matrix current conservation:

$$\hat{I}_1 + \hat{I}_2 + i(G_1 + G_2) \frac{E}{E_{Th}} [\hat{\tau}_3, \hat{G}_c] = 0$$

Nonlinear matrix boundary condition ("Nazarovs law", analog Ohms law) for a ballistic connector

$$\hat{I}_i = G_i \frac{\left[\hat{G}_c, \hat{G}_i(\varphi_i)\right]}{1 + \left\{\hat{G}_c, \hat{G}_i(\varphi_i)\right\}/2}$$

Superconducting contacts:

$$\hat{G}_{i}(\varphi_{i}) = \frac{1}{\sqrt{E^{2} - \Delta^{2}}} \begin{pmatrix} -iE & \Delta e^{i\varphi_{i}} \\ e^{-i\varphi_{i}} & iE \end{pmatrix}$$

DOS on central node from matrix Greens function

$$\frac{N(E)}{N_0} = \Re \left[\mathrm{Tr}\hat{\tau}_3 \hat{G}_c(E) \right]$$

[Nazarov, Superlatt. Microstr. (1999)]

 \widehat{G}_1

The Effect of finite Δ for a ballistic cavity

Small secondary gap just below Delta!

J. Reutlinger, L. Glazman, Yu. V. Nazarov, and WB, PRL 112, 067001 (2014)

Earlier hints?

Belzig, Bruder, Schön, PRB (1996)

Levchenko, PRB (2008)

Further hints: Golubov, Kupryanov; Bezuglyi; Kuipers, Richter;....

Phase-dependence of the secondary gap:

• Secondary gap vanishes at a critical phase with a "smile"

J. Reutlinger, L. Glazman, Yu. V. Nazarov, and WB, Phys. Rev. Lett. 112, 067001 (2014)

Further properties of the smile gap

- Decreases with increasing Eth
- Closes at a critical phase
- Detaches from Δ for ETh< Δ
- Vanishes for $ETh < 0.68 \Delta$

- Full subgap DOS scales with Δ/E_{Th}
- Size of the smile gap $\sim \Delta^3 / E_{Th}^2$
- Generalization to arbitrary contacts: smile gap is related to a gap in transmission eigenvalue distribution!

- •The secondary gap ist robust against asymmetries
- Further gaps appear around phase difference π
- Phase dependent energy bands develop
- More gaps develop (e.g. centered at $\varphi = \pi$)

J. Reutlinger, L. Glazman, Yu. V. Nazarov, and WB, Phys. Rev. B 90, 014521 (2014)

Simple physical picture:

Condition for Andreev bound states

$$2E/E_{\rm Th} - 2\arccos(E/\Delta) \pm \varphi = 2\pi n$$

"Not so short" junction $E_{Th} \gg \Delta$

$$E(\varphi) = \Delta \cos(\Delta/E_{\rm Th} \pm \varphi/2)$$
$$\approx \Delta [1 - (\Delta/E_{\rm Th} \pm \varphi/2)^2/2]$$

3) Topology and smile gaps in a 4-Terminal Josephson junction

T. Yokoyama, J. Reutlinger, W. Belzig, and Y. V. Nazarov Phys. Rev. B 95, 1915 (2017)

"Smile"-Gaps in Multi-Terminal Josephson-contacts

- Elimination of internal modes \rightarrow effective ring scattering matrix
- Andreev levels determined by [Beenakker, Phys. Rev. Lett. 67, 3836 (1991)]

$$\det \left[e^{2i\chi} - e^{i\hat{\varphi}} \hat{S}_h(E) e^{-i\hat{\varphi}} \hat{S}_e(E) \right] = 0 \qquad \chi = \arccos E/\Delta$$

[Multi-terminal JJ: Cuevas, Pothier, PRL (2007); Freyn, Doucot, Feinberg, and Mélin, PRL (2011); van Heck, Mi, Akhmerov, PRB (2014); Riwar, Houzet, Meyer, Nazarov, Nat. Comm. (2016)]

Topological protection of minigaps (at E=0)

Quasiclassical Greens functions at E=0:

$$\widehat{G}_i(E=0) = \begin{pmatrix} 0 & e^{i\eta_i} \\ e^{-i\eta_i} & 0 \end{pmatrix}$$

Phase differences around possible loops

$$P(\alpha) = \{\alpha/2\pi + 1/2\} - \pi \ (\alpha \to [-\pi, \pi])$$

$$2\pi n_0 = P(\eta_0 - \varphi_0) + P(\eta_1 - \eta_0) + P(\varphi_1 - \eta_1) + \varphi_0 - \varphi_1$$

 $n_{1,2,3}$ from cyclic permutations

$$n_4 = \Sigma_{i=0}^3 n_i \in 0, \pm 1$$

Quasiclassical calculation (circuit theory)

- Different topological regions characterized by a set $n_0n_1n_2n_3$
- Separated by 'gapless' states
- Gaps most pronounced for 'open' case (N >> M)

Stray level to break topological protection

• For M/N < 1/2 the scattering matrices are characterized by transmission eigenvalue distributions with a minimal transmission eigenvalue T_c .

→ Introducing one extra transmission eigenvalues T_{ext} in the interval $[0, T_c]$ leads to stray level 1

 T_{ext} between 0 (red) and T_{c} (blue) at S⁽¹⁾ (numerical)

- Smile gaps are protected by the gap in the transmission eigenvalue distribution
- Smile gaps for ballistic quantum point contacts

Summary

- Proximity density of states still has surprises beyond minigap
- Secondary gap feature at E< Δ in a cavity between superconductors with $E_{Th} > \Delta$ [1]
- Phase-dependent closing in a "Smile"-shape \rightarrow smile gap
- Robust against asymmetries, weak spatial dependence and weak backscattering [2]
- The level number in the DOS between minigap and smile gap is set by the number of open transport channels [3]
- Fluctuations of the smile gap are universal
- Multi-terminal Josephson junctions provide a rich structure of multiple gaps (smile and mini) [4]
- Gaps are protected by different levels of topology

[1] J. Reutlinger, L. Glazman, Yu. V. Nazarov, W.B. Phys. Rev. Lett. **112**, 067001 (2014)

- [2] J. Reutlinger, L. Glazman, Yu. V. Nazarov, W.B. Phys. Rev. B 90, 014521 (2014)
- [3] J. Reutlinger, L. Glazman, Yu. V. Nazarov, W.B. (unpublished)
- [4] T. Yokoyama, J. Reutlinger, W. B., and Y. V. Nazarov, arXiv:1609.05455

Summary in pictures

[1] J. Reutlinger, L. Glazman, Yu. V. Nazarov,
W.B. Phys. Rev. Lett. **112**, 067001 (2014)
[2] J. Reutlinger, L. Glazman, Yu. V. Nazarov,
W.B. Phys. Rev. B **90**, 014521 (2014)
[3] J. Reutlinger, L. Glazman, Yu. V. Nazarov,
W.B. (unpublished)
[4] T. Yokoyama, J. Reutlinger, W. B., and Y. V.

 M_2 levels

 φ_0

 S_3

Nazarov, arXiv:1609.05455

smile gap

 M_3 levels

 $arphi_3$

 \Diamond

 M_1 levels

