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The density of Andreev levels in a normal metal (N) in contact with two superconductors (S) is
known to exhibit an induced minigap related to the inverse dwell time. We predict a small secondary
gap just below the superconducting gap edge - a feature that has been overlooked so far in numerous
microscopic studies of the density of states in SNS structures. In a generic structure with N being
a chaotic cavity, the secondary gap is the widest at zero phase bias. It closes at some finite phase
bias, forming the shape of a ”smile”. Asymmetric couplings give even richer gap structures near
the phase di↵erence ⇡. All the features found should be amendable to experimental detection in
high-resolution low-temperature tunneling spectroscopy.

PACS numbers: 74.45.+c,74.78.Na,74.78.-w,

The modification of the density of states (DOS) in a
normal metal by a superconductor in its proximity has
been discovered almost 50 years ago [1]. Soon afterwards,
it was predicted theoretically for di↵usive structures that
a so-called minigap of the order of the inverse dwell time
in the normal metal (or the Thouless energy) appears
in the spectrum [2]. The energy-dependent DOS reflects
the energy scale of electron-hole decoherence, and is sen-
sitive to the distance, the geometry and the properties
of the contact between the normal metal and the su-
perconductor [3–5]. The details of the local density of
states in proximity structures have been investigated ex-
perimentally many years later [6–10] and the theoretical
predictions have been confirmed [11–13] in quite a detail.

Substantial interest has been paid to the density of
states in a finite normal metal between two superconduct-
ing leads with di↵erent superconducting phases [14, 15].
The di↵erence between di↵usive [5] and classical ballistic
[16] dynamics has been investigated [17]. Many publi-
cations have addressed the dependence of the minigap
on the competition between dwell and Ehrenfest time
[18, 19]. The most generic model in this context is that
of a chaotic cavity, where a piece of normal metal is
connected to the superconductors by means of ballistic
point contacts that dominate the resistance of the struc-
ture in the normal state. The Thouless energy is given
by Eth = (G⌃/GQ)�S , GQ = e2/⇡~ being the conduc-
tance quantum, G⌃ � GQ being the total conductance
of the contacts and �S being the level spacing in the nor-
mal metal provided the contacts are closed. The DOS in
chaotic cavities has been studied throughout years. [19–
21]

The DOS depends on the ratio of ETh and supercon-
ducting energy gap �, and on the superconducting phase
di↵erence. If the dwell time exceeds the Ehrenfest time,
qualitative features of the DOS do not seem to depend
much on the contact nature and are the same for ballistic,
di↵usive and tunnel contacts. Mesoscopic fluctuations of

FIG. 1. Upper plot: DOS in the central region at zero phase
di↵erence and ETh = � showing the usual minigap around
E = 0 and additionally a secondary gap below E = �. On
the right: Quantum circuit theory [26] diagram of the system
under investigation. A pseudo-terminal labelled with ETh

accounts for random phase shifts between electron and hole
components of the quasiparticle wave functions (not implying
an electric connection to the ground) Lower plot: DOS near
� illustrating the phase dependence of the secondary gap.

the DOS [22, 23] are small provided G � GQ. It looks
like everything is understood, perhaps except a small dip
or peak in the DOS just at the gap edge for the di↵u-
sive case, which has been seen in [3, 5, 24–27], but never
attracted a proper attention. The e↵ect of a large Ehren-
fest time might lead to a more complex proximity density
of states. [19, 34].
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The considerations in the open regime make the link be-

tween these topological numbers and the smile gaps obvious.
In the open regime Tc is close to 1 and we find bunches of al-
most degenerate Andreev levels, which are separated by large
smile gaps. Since the number of levels in a bunch is Mi, the
number of levels below a smile gap can be i. Mi; ii. Mi + Mj,
j , i; iii. Mi + Mj + Mk, j , i , k, j , k. This gives 14 dis-
tinct possibilities and provides a robust classification of smile
gaps. By virtue of continuity, this classification established in
the open limit is valid in the whole space of parameters where
the smile gaps become smaller and eventually close. In this
way, the topological numbers just defined distinguish the lev-
els that look coequal in a quasi-continuous spectrum.

Let us consider in more detail the crossings of bunches to
see how the smile gaps are separated from each other. The
bunches have finite width which is related to a small but finite
value of 1 � Tc. We find a hard edge on one side with a high
level density, where the bunch is confined by the curve of a
level with ideal transmission T = 1. Since transmission eigen-
values above T = 1 are not possible, no random realization of
the scattering matrices could break these edges. On the other
side, the levels lie less dense and the boundary of the bunch
is defined by the curve of a level corresponding to Tc. Thus
this edge is no hard but rather soft edge. The di↵erent level
densities at the two edges are related to di↵erent densities of
transmission eigenvalues. At T = 1 the transmission distribu-
tion diverges, leading to a very dense distribution of Andreev
levels, whereas at Tc the distribution remains finite. The ex-
ponential suppression of transmission eigenvalues below Tc
directly translates into an exponential suppression of Andreev
levels out of the bunches leading to an exponential protection
of the smile gaps. The number of levels in each bunch is con-
stant and equal to the number of transport modes in the cor-
responding inner QPC. These properties are summarized in
Fig. 12, where the crossings of three bunches, that surround
a smile gap, are sketched. The red lines indicate the finite
widths of the bunches. The number of levels in each bunch
must be conserved at each crossing. If the two bunches have
di↵erent numbers of levels, some levels have to go straight
through the crossing point in order to assure this.

The gap in the transmission distribution and associated
topological protection can be violated by adding “by hand”
an additional isolated transmission eigenvalue into the gap of
the transmission spectrum. This leads to the violation of the
smile gaps: a single Andreev level emerges inside the gap. We
consider this in detail in the next subsection.

F. Stray levels in the smile gaps

Let us start with the numerical calculation of stray levels.
We consider the open limit of small ratio M/N, where An-
dreev levels come in almost degenerate bunches, which are
separated by wide smile gaps. The minimum transmission
Tc, which is determined by the ration M/N, is close to 1 in
this regime. Andreev levels are mostly localized in one of the
inner QPC connecting the neighboring nodes. We break the

FIG. 12: (Color online) Sketch of three bunches that cross at three
points surrounding a smile gap. The bunches have finite width, which
is related to the finite width of the transmission distribution in the
nodes. This finite width is given by the thick (red) curves bounding
the bunches of Andreev levels. At each crossing point the number of
Andreev levels in each crossing bunch must be conserved.

gap in the transmission distribution by adding artificially only
a single transmission eigenvalue. Because of the correspon-
dence of the transmission gap and the smile gaps this leads
to the violation of the smile gaps by a single Andreev level.
While a single Andreev level penetrates into the smile gaps,
all other levels remain in bunches corresponding to a particu-
lar ratio M/N. This allows us in principle to study the closing
of smile gap by adding levels successively.

In this calculation, we choose equal numbers of internal
modes Mi = M = 100 and the ratio M/N = 1/1000. In
Fig. 13 a single transmission eigenvalue at a single node [(a)
node 0, (b) node 1, (c) node 2, (d) node 3] is replaced by Text,
while the transmission distributions at the other nodes are not
changed. The superconducting phases are swept along the line
('1,'2,'3) = (1, 3, 6)'. The panels (a), (c) and (d) show a
single stray level where Text = 0 was chosen. The stray level
approximately follows an isolated curve penetrating various
gaps and crossing the level bunches. The curves look like
superpositions of simple harmonic functions. Of course, the
single level does not actually cross the bunch: rather, the level
joins the bunch on one side while another level splits from the
bunch at the opposite side. This is clearly seen at all crossings.

In (b), we change Text from 0 (the red curve) to Tc (the blue
curve) in equal steps producing a set of curves. We see that
in fact a single additional transmission eigenvalue produces
two isolated ABS. The reason we see only one level in the
panels (a), (c), and (d) is that at Text = 0 one channel is fully
reflected, giving rise to a level at E = �, which is not visible
in the plots. We see that the positions of the isolated ABS
approach the bunches upon Text ! Tc. For Text = Tc the stray
level is absorbed by the bunches, and is not visible.

Figure 14 shows stray levels for the situation where an extra
eigenvalue Text = 0 is replaced at all the nodes. Note that the
total number of ABS is 4M = 400. We find that none of
the stray levels penetrates the three proximity gaps, which are
marked in green in the figure and survive in the closed limit.
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1) Introduction, History, Experiments

SUPER CONDUCTING P ROXI M IT Y E F FE CT

seems to be that the I"s be much less than the Fermi
energy, a condition satis6ed in all practical cases. The
proof of this statement requires an assumption about
the phases of the tunnehng matrix elements (take
random phases) and is not very illuminating.

III. EXCITATION SPECTRUM

In this section we discuss the solution of the sclf-
energy equations for Qxed potentials hN&~ and bp". We
want to solve the simultaneous equations (9)

for the self-energies &sr(E) and Aa(E) and then compute the electronic density of states

&s.N(E) = «fE/LE' —&8y(E) )us)

for both slabs. According to the tunneling theory, this
electronic density of states is measured directly by
placing a tunnel junction on one or the other side of the
SN sandwich and measuring the normalized 6rst
derivative of the tunneling current versus voltage. We
begin with R qualltatlve dlscusslon of certain features of
the solutions and then present quantitative numerical
results.
Consider the case of a thin normal metal relative to

the superconductor and a small transmission coef6cient
so that I'8« I'+&&68&". Then the self-energy for the
normal metal ls approximately

at low energy, E&&88&", and has a little anomaly for
E 68&". The density of states in N is then BCS-like

X (E) «)E/(E' —QNs) 'i'1 (19)
at low energies, with the energy gap Q~ &res"+I'ar
and has a little anomaly for E 88&". The self-energy
for the superconductor is approximately

hs(E) hs&s/$1+ si's/(Es —QNs) '~'j, (20)
which gives a small BCS-like density of states at low
energy'.

and a broadened BCS-like density of states for E
This behavior is sketched in Fig. 3.Note that the energy
gap in the excitation spectrum is the same in N andfS.
This is the case because all of the @rave functions have
6nite amplitudes in both N and S. At low energy,
E Q~, the wave functions have larger amplitudes in N
giving a larger density of states, whereas for X~58&"
the wave functions have larger amplitudes in S.
%hen the pairing interaction vanishes in 5 the

energy gRp ls just

Q~~I"~=A/re

This appears to be a gen.eral result. For the clean super-
conductor with a perfect interface, de Gennes and Saint-
James' 6nd an eigenvalue spectrum starting from

Q~(8) =-', s (Ass cos8)/2dsr, (23)
where the time spent in the normal, metal is

rN= 24~/('vs cos8), (24)
and 8 is the angle between the electron's momentum and
the normal to the interface. For the dean case one
averages over 8 (or over path lengths) with contribu-
tions from long path lengths, and there is no gap in the
excitation spectrum. For the tunneling model we have
assumed that the path length or relaxation time is the
same for each state and we find a sharp gap in the
excitation spectrum. It is clear that the experimental
case is somewhere between these limits and one would
expect the experimental density of states near the gap
to be somewhat more smeared out than the tunneling
model predicts.
In order to 6nd quantitative results we must solve

(16) on a computer. We use two numerical techniques
to 6nd a solution. For energies not too near the energy
gap Q~ a straightforward iteration procedure converges.
We begin with a zeroth-order guess for hs(E) and
Asr (E)LBB&s&(E)=hs ", h~ts' (E)=As ss$ and substiute
these on the right-hand side of (16). The resulting
left-hand. side is an improved solution and this pro-
cedure can be iterated until an accurate solution is
obtained. For energies near Q~ this iterative procedure
diverges. For this case we form a erst-order diBerential
equation for dh8(E)/dE and de(E)/dE by differ-
entiating (16) and integrate the differential equation
numericaHy, starting from a solution obtained by
iteration for some energy greater than 0@.The solution
for h&(E) and hs(E) for a typical set of parameters
(b~&"=0, I's =O.S, 68&"=1, I's=0.2) is shown in Fig.
' P. G. De Gennes and D. Saint-James, Phys. Letters 4, 151
(1963}.
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The local density of states
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• Continuous transition from a superconducting to a normal density of states
• Distant-dependent gap feature
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The phase-dependent 
minigap

H. Le Sueur, P. Joyez, H. Pothier, C. Urbina, and D. Esteve, Phys. Rev. Lett. (2008).

Clear observation of the minigap and the 
phase dependence
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Matrix current conservation:

Nonlinear matrix boundary condition ("Nazarovs law”, analog 

Ohms law) for a ballistic connector

DOS on central node from matrix Greens function

Method: Quasiclassical Greens functions (Quantum circuit method)
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high-resolution low-temperature tunneling spectroscopy.
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The modification of the density of states (DOS) in a
normal metal by a superconductor in its proximity has
been discovered almost 50 years ago [1]. Soon afterwards,
it was predicted theoretically for di↵usive structures that
a so-called minigap of the order of the inverse dwell time
in the normal metal (or the Thouless energy) appears
in the spectrum [2]. The energy-dependent DOS reflects
the energy scale of electron-hole decoherence, and is sen-
sitive to the distance, the geometry and the properties
of the contact between the normal metal and the su-
perconductor [3–5]. The details of the local density of
states in proximity structures have been investigated ex-
perimentally many years later [6–10] and the theoretical
predictions have been confirmed [11–13] in quite a detail.

Substantial interest has been paid to the density of
states in a finite normal metal between two superconduct-
ing leads with di↵erent superconducting phases [14, 15].
The di↵erence between di↵usive [5] and classical ballistic
[16] dynamics has been investigated [17]. Many publi-
cations have addressed the dependence of the minigap
on the competition between dwell and Ehrenfest time
[18, 19]. The most generic model in this context is that
of a chaotic cavity, where a piece of normal metal is
connected to the superconductors by means of ballistic
point contacts that dominate the resistance of the struc-
ture in the normal state. The Thouless energy is given
by Eth = (G⌃/GQ)�S , GQ = e2/⇡~ being the conduc-
tance quantum, G⌃ � GQ being the total conductance
of the contacts and �S being the level spacing in the nor-
mal metal provided the contacts are closed. The DOS in
chaotic cavities has been studied throughout years. [19–
21]

The DOS depends on the ratio of ETh and supercon-
ducting energy gap �, and on the superconducting phase
di↵erence. If the dwell time exceeds the Ehrenfest time,
qualitative features of the DOS do not seem to depend
much on the contact nature and are the same for ballistic,
di↵usive and tunnel contacts. Mesoscopic fluctuations of

FIG. 1. Upper plot: DOS in the central region at zero phase
di↵erence and ETh = � showing the usual minigap around
E = 0 and additionally a secondary gap below E = �. On
the right: Quantum circuit theory [26] diagram of the system
under investigation. A pseudo-terminal labelled with ETh

accounts for random phase shifts between electron and hole
components of the quasiparticle wave functions (not implying
an electric connection to the ground) Lower plot: DOS near
� illustrating the phase dependence of the secondary gap.

the DOS [22, 23] are small provided G � GQ. It looks
like everything is understood, perhaps except a small dip
or peak in the DOS just at the gap edge for the di↵u-
sive case, which has been seen in [3, 5, 24–27], but never
attracted a proper attention. The e↵ect of a large Ehren-
fest time might lead to a more complex proximity density
of states. [19, 34].
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The density of Andreev levels in a normal metal (N) in contact with two superconductors (S) is
known to exhibit an induced minigap related to the inverse dwell time. We predict a small secondary
gap just below the superconducting gap edge - a feature that has been overlooked so far in numerous
microscopic studies of the density of states in SNS structures. In a generic structure with N being
a chaotic cavity, the secondary gap is the widest at zero phase bias. It closes at some finite phase
bias, forming the shape of a ”smile”. Asymmetric couplings give even richer gap structures near
the phase di↵erence ⇡. All the features found should be amendable to experimental detection in
high-resolution low-temperature tunneling spectroscopy.
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The modification of the density of states (DOS) in a
normal metal by a superconductor in its proximity has
been discovered almost 50 years ago [1]. Soon afterwards,
it was predicted theoretically for di↵usive structures that
a so-called minigap of the order of the inverse dwell time
in the normal metal (or the Thouless energy) appears
in the spectrum [2]. The energy-dependent DOS reflects
the energy scale of electron-hole decoherence, and is sen-
sitive to the distance, the geometry and the properties
of the contact between the normal metal and the su-
perconductor [3–5]. The details of the local density of
states in proximity structures have been investigated ex-
perimentally many years later [6–10] and the theoretical
predictions have been confirmed [11–13] in quite a detail.

Substantial interest has been paid to the density of
states in a finite normal metal between two superconduct-
ing leads with di↵erent superconducting phases [14, 15].
The di↵erence between di↵usive [5] and classical ballistic
[16] dynamics has been investigated [17]. Many publi-
cations have addressed the dependence of the minigap
on the competition between dwell and Ehrenfest time
[18, 19]. The most generic model in this context is that
of a chaotic cavity, where a piece of normal metal is
connected to the superconductors by means of ballistic
point contacts that dominate the resistance of the struc-
ture in the normal state. The Thouless energy is given
by Eth = (G⌃/GQ)�S , GQ = e2/⇡~ being the conduc-
tance quantum, G⌃ � GQ being the total conductance
of the contacts and �S being the level spacing in the nor-
mal metal provided the contacts are closed. The DOS in
chaotic cavities has been studied throughout years. [19–
21]

The DOS depends on the ratio of ETh and supercon-
ducting energy gap �, and on the superconducting phase
di↵erence. If the dwell time exceeds the Ehrenfest time,
qualitative features of the DOS do not seem to depend
much on the contact nature and are the same for ballistic,
di↵usive and tunnel contacts. Mesoscopic fluctuations of

FIG. 1. Upper plot: DOS in the central region at zero phase
di↵erence and ETh = � showing the usual minigap around
E = 0 and additionally a secondary gap below E = �. On
the right: Quantum circuit theory [26] diagram of the system
under investigation. A pseudo-terminal labelled with ETh

accounts for random phase shifts between electron and hole
components of the quasiparticle wave functions (not implying
an electric connection to the ground) Lower plot: DOS near
� illustrating the phase dependence of the secondary gap.

the DOS [22, 23] are small provided G � GQ. It looks
like everything is understood, perhaps except a small dip
or peak in the DOS just at the gap edge for the di↵u-
sive case, which has been seen in [3, 5, 24–27], but never
attracted a proper attention. The e↵ect of a large Ehren-
fest time might lead to a more complex proximity density
of states. [19, 34].
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known to exhibit an induced minigap related to the inverse dwell time. We predict a small secondary
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The modification of the density of states (DOS) in a
normal metal by a superconductor in its proximity has
been discovered almost 50 years ago [1]. Soon afterwards,
it was predicted theoretically for di↵usive structures that
a so-called minigap of the order of the inverse dwell time
in the normal metal (or the Thouless energy) appears
in the spectrum [2]. The energy-dependent DOS reflects
the energy scale of electron-hole decoherence, and is sen-
sitive to the distance, the geometry and the properties
of the contact between the normal metal and the su-
perconductor [3–5]. The details of the local density of
states in proximity structures have been investigated ex-
perimentally many years later [6–10] and the theoretical
predictions have been confirmed [11–13] in quite a detail.

Substantial interest has been paid to the density of
states in a finite normal metal between two superconduct-
ing leads with di↵erent superconducting phases [14, 15].
The di↵erence between di↵usive [5] and classical ballistic
[16] dynamics has been investigated [17]. Many publi-
cations have addressed the dependence of the minigap
on the competition between dwell and Ehrenfest time
[18, 19]. The most generic model in this context is that
of a chaotic cavity, where a piece of normal metal is
connected to the superconductors by means of ballistic
point contacts that dominate the resistance of the struc-
ture in the normal state. The Thouless energy is given
by Eth = (G⌃/GQ)�S , GQ = e2/⇡~ being the conduc-
tance quantum, G⌃ � GQ being the total conductance
of the contacts and �S being the level spacing in the nor-
mal metal provided the contacts are closed. The DOS in
chaotic cavities has been studied throughout years. [19–
21]

The DOS depends on the ratio of ETh and supercon-
ducting energy gap �, and on the superconducting phase
di↵erence. If the dwell time exceeds the Ehrenfest time,
qualitative features of the DOS do not seem to depend
much on the contact nature and are the same for ballistic,
di↵usive and tunnel contacts. Mesoscopic fluctuations of

FIG. 1. Upper plot: DOS in the central region at zero phase
di↵erence and ETh = � showing the usual minigap around
E = 0 and additionally a secondary gap below E = �. On
the right: Quantum circuit theory [26] diagram of the system
under investigation. A pseudo-terminal labelled with ETh

accounts for random phase shifts between electron and hole
components of the quasiparticle wave functions (not implying
an electric connection to the ground) Lower plot: DOS near
� illustrating the phase dependence of the secondary gap.

the DOS [22, 23] are small provided G � GQ. It looks
like everything is understood, perhaps except a small dip
or peak in the DOS just at the gap edge for the di↵u-
sive case, which has been seen in [3, 5, 24–27], but never
attracted a proper attention. The e↵ect of a large Ehren-
fest time might lead to a more complex proximity density
of states. [19, 34].
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Andreev levels deplete energy states above the superconductive gap, which leads to the peculiar nonmo-
notonous crossover in the local density of states of mesoscopic superconductor/normal-metal/superconductor
junctions. This effect is especially pronounced in the case when the normal metal bridge length L is small
compared to the superconductive coherence length !. A remarkable property of the crossover function is that it
vanishes not only at the proximity induced gap "g but also at the superconductive gap #. Analytical expressions
for the density of states at both gap edges, as well as the general structure of the crossover are discussed.
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Experimental advances in probing systems at the
mesoscopic scale1–5 revived interest to the proximity
related problems in superconductor–normal-metal !SN"
heterostructures.6 The most simple physical quantity reflect-
ing proximity effect is the local density of states !LDOS"
%!" ,r", which can be measured in any spatial point r at given
energy " using scanning tunneling microscopy. The effects of
superconductive correlations on the spectrum of a normal
metal are especially dramatic in restricted geometries. For
example, in the case of superconductor–normal-metal–
superconductor !SNS" junction, proximity effect induces an
energy gap "g in excitation spectrum of a normal metal with
the square root singularity %!" ,r"&#" /"g−1 in the density of
states just above the threshold "−"g'"g Ref. 7–12 !here and
in what follows, % will be measured in units of the bare
normal metal density of states ( at Fermi energy". The most
recent theoretical interest was devoted either to
mesoscopic13,14,16,17 or quantum18–21 fluctuation effects on
top of mean-field results7–12 that smear hard gap below "g
and lead to the so-called subgap tail states with nonvanish-
ing %&exp$−g!1−" /"g"!6−d"/4% at "g−") "g, where g is the
dimensionless normal wire conductance and d is the effec-
tive system dimensionality. The latter is essentially a nonper-
turbative result that requires instantonlike approach within *
model19,20 or relies on methods of random matrix theory.16,18

Surprisingly, after all of these advances, there is something
interesting to discuss about proximity induced properties of
the SNS junctions even at the level of quasiclassical approxi-
mation by employing Usadel equations.22 The purpose of this
work is to point out a subtle feature of the crossover in the
local density of states of mesoscopic SNS junctions. The
latter was seen in some early and recent studies,8,11,12,14,15

however, it was neither emphasized nor theoretically ad-
dressed.

To this end, consider normal wire !N" of length L and
width W located between two superconductive electrodes
!S". In what follows, we concentrate on diffusive quasi-one-
dimensional geometry and the short wire limit L'!, where
!=#DS /# is superconductive coherence length, with DS as
the diffusion coefficient in the superconductor and # as the
energy gap !hereafter, +=1". The center of the wire is chosen
to be at x=0 and boundaries with superconductors at
x= , L /2 correspondingly, where x is the coordinate along
the wire.

Under the condition L'!, the proximity effect is espe-
cially strong—superconductive correlations penetrate the en-
tire volume of the normal region. As the result, the induced
energy gap in normal wire "g is large and turns out to be of
the same order as the gap in the superconductor itself
"g=#−-#, with the finite size correction -#&#3 /"Th

2 '#,
where "Th=DN /L2 is the Thouless energy and DN is the dif-
fusion coefficient in the normal bridge. The latter should be
contrasted to the long wire limit L. !, where the proximity
effect is weak and the induced gap is "g&"Th'#. Just
above the gap "−"g'"g, density of states has square root
singularity, which is similar to the L. ! case,7–12 see Fig. 1,
which is a robust property of quasiclassical approximation.
However, the prefactor for L'! is significantly enhanced
%!" ,x"& !"Th /#"2#" /"g−1 !note here that proportionality
sign implies characteristic energy dependence, while the ex-
act numerical coefficient is different for a given coordinate x
along the wire". The value of "g is a property of the spec-
trum, thus it is x independent.

One would naturally expect that above the proximity in-
duced gap "g, local density of states goes through the maxi-
mum %max=%!"=# ,x" and then crosses over to the BCS like
DOS %BCS=" /#"2−#2 at "/#, which finally saturates to
unity %→1 at "→0. Surprisingly, however, the crossover
scenario is different. The density of states indeed reaches the
maximum, which occurs at "&#−-# /2, but then decreases
and vanishes to zero at superconductive gap # with quarctic

FIG. 1. !Color online" Schematic plot for the local density of
states crossover in the short L'! diffusive SNS junction.
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• Secondary gap vanishes at a critical phase with a “smile”

Phase-dependence of the secondary gap:
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The density of Andreev levels in a normal metal (N) in contact with two superconductors (S) is
known to exhibit an induced minigap related to the inverse dwell time. We predict a small secondary
gap just below the superconducting gap edge - a feature that has been overlooked so far in numerous
microscopic studies of the density of states in SNS structures. In a generic structure with N being
a chaotic cavity, the secondary gap is the widest at zero phase bias. It closes at some finite phase
bias, forming the shape of a ”smile”. Asymmetric couplings give even richer gap structures near
the phase di↵erence ⇡. All the features found should be amendable to experimental detection in
high-resolution low-temperature tunneling spectroscopy.
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The modification of the density of states (DOS) in a
normal metal by a superconductor in its proximity has
been discovered almost 50 years ago [1]. Soon afterwards,
it was predicted theoretically for di↵usive structures that
a so-called minigap of the order of the inverse dwell time
in the normal metal (or the Thouless energy) appears
in the spectrum [2]. The energy-dependent DOS reflects
the energy scale of electron-hole decoherence, and is sen-
sitive to the distance, the geometry and the properties
of the contact between the normal metal and the su-
perconductor [3–5]. The details of the local density of
states in proximity structures have been investigated ex-
perimentally many years later [6–10] and the theoretical
predictions have been confirmed [11–13] in quite a detail.

Substantial interest has been paid to the density of
states in a finite normal metal between two superconduct-
ing leads with di↵erent superconducting phases [14, 15].
The di↵erence between di↵usive [5] and classical ballistic
[16] dynamics has been investigated [17]. Many publi-
cations have addressed the dependence of the minigap
on the competition between dwell and Ehrenfest time
[18, 19]. The most generic model in this context is that
of a chaotic cavity, where a piece of normal metal is
connected to the superconductors by means of ballistic
point contacts that dominate the resistance of the struc-
ture in the normal state. The Thouless energy is given
by Eth = (G⌃/GQ)�S , GQ = e2/⇡~ being the conduc-
tance quantum, G⌃ � GQ being the total conductance
of the contacts and �S being the level spacing in the nor-
mal metal provided the contacts are closed. The DOS in
chaotic cavities has been studied throughout years. [19–
21]

The DOS depends on the ratio of ETh and supercon-
ducting energy gap �, and on the superconducting phase
di↵erence. If the dwell time exceeds the Ehrenfest time,
qualitative features of the DOS do not seem to depend
much on the contact nature and are the same for ballistic,
di↵usive and tunnel contacts. Mesoscopic fluctuations of

FIG. 1. Upper plot: DOS in the central region at zero phase
di↵erence and ETh = � showing the usual minigap around
E = 0 and additionally a secondary gap below E = �. On
the right: Quantum circuit theory [26] diagram of the system
under investigation. A pseudo-terminal labelled with ETh

accounts for random phase shifts between electron and hole
components of the quasiparticle wave functions (not implying
an electric connection to the ground) Lower plot: DOS near
� illustrating the phase dependence of the secondary gap.

the DOS [22, 23] are small provided G � GQ. It looks
like everything is understood, perhaps except a small dip
or peak in the DOS just at the gap edge for the di↵u-
sive case, which has been seen in [3, 5, 24–27], but never
attracted a proper attention. The e↵ect of a large Ehren-
fest time might lead to a more complex proximity density
of states. [19, 34].
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• Decreases with increasing ETh

• Closes at a critical phase
• Detaches from Δ for ETh< Δ
• Vanishes for ETh<0.68 Δ

Universality for !"# ≫ Δ

• Full subgap DOS scales with Δ/!"#
• Size of the smile gap ~Δ(/!"#)
• Generalization to arbitrary contacts: 

smile gap is related to a gap in 
transmission eigenvalue distribution!

Further properties of the smile gap



Asymmetrically coupled contacts

•The secondary gap ist robust against asymmetries
•Further gaps appear around phase difference π
•Phase dependent energy bands develop
•More gaps develop (e.g. centered at !=π)

4

FIG. 4. Dependence of the local density of states on increasing asymmetry a = G1/G2. The lower part of each plot shows the
well-known minigap, the upper part shows the secondary gap. In each plot ETh = �. For a symmetric setup (left plot) the
result is equivalent to Fig. 1. With increasing asymmetry a = 10 (central plot) and a = 100 (right plot) both gaps are stable,
however additional gaps appear around ' = ⇡.

The secondary gaps we have predicted for a chaotic
cavity also persist for more general contacts involving
transmission eigenvalues in the whole range between 0
and 1. A detailed study of the DOS for di↵erent contact
types will be published elsewhere. To shortly summa-
rize those results, the novel gaps persist if the majority
of the transmission eigenvalues is concentrated at higher
values approaching 1. The gaps do not appear if a sub-
stantial fraction of the transmission eigenvalues is close
to zero. E.g., this is the case for tunnel, di↵usive [33] or
dirty contacts [30], where no secondary gaps appear in
the spectrum. We note that in our work the Ehrenfest
time is small and plays no role, di↵erent to other stud-
ies [19, 34]. Furthermore, our predicted secondary gaps
are also robust against a weak spatial dependence as we
discuss in the Supplemental Material [35].

To conclude, we have shown that a smile-shaped sec-
ondary gap just below the superconducting gap edge �
appears in the density of states of a cavity between two
superconductors. The gap becomes small for large Thou-
less energies, closes at a finite phase di↵erence between
the superconductors, and disappears at a critical ETh '
0.68�. These gap features are robust against asymme-
tries of the contact conductances and non-ballistic con-
tacts involving transmissions smaller than one. For an

asymmetric setup, we have found two more additional
gaps centered at phase di↵erence ⇡. It would be inter-
esting to experimentally observe our predictions, e.g. in
multi-terminal semiconductor or carbon nanotube cavi-
ties by means of tunneling spectroscopy. On the theo-
retical side, it presents a challenge to explore in more
detail the level correlations at the critical points, when
the secondary gap closes with phase.
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The density of Andreev levels in a normal metal (N) in contact with two superconductors (S) is
known to exhibit an induced minigap related to the inverse dwell time. We predict a small secondary
gap just below the superconducting gap edge - a feature that has been overlooked so far in numerous
microscopic studies of the density of states in SNS structures. In a generic structure with N being
a chaotic cavity, the secondary gap is the widest at zero phase bias. It closes at some finite phase
bias, forming the shape of a ”smile”. Asymmetric couplings give even richer gap structures near
the phase di↵erence ⇡. All the features found should be amendable to experimental detection in
high-resolution low-temperature tunneling spectroscopy.
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The modification of the density of states (DOS) in a
normal metal by a superconductor in its proximity has
been discovered almost 50 years ago [1]. Soon afterwards,
it was predicted theoretically for di↵usive structures that
a so-called minigap of the order of the inverse dwell time
in the normal metal (or the Thouless energy) appears
in the spectrum [2]. The energy-dependent DOS reflects
the energy scale of electron-hole decoherence, and is sen-
sitive to the distance, the geometry and the properties
of the contact between the normal metal and the su-
perconductor [3–5]. The details of the local density of
states in proximity structures have been investigated ex-
perimentally many years later [6–10] and the theoretical
predictions have been confirmed [11–13] in quite a detail.

Substantial interest has been paid to the density of
states in a finite normal metal between two superconduct-
ing leads with di↵erent superconducting phases [14, 15].
The di↵erence between di↵usive [5] and classical ballistic
[16] dynamics has been investigated [17]. Many publi-
cations have addressed the dependence of the minigap
on the competition between dwell and Ehrenfest time
[18, 19]. The most generic model in this context is that
of a chaotic cavity, where a piece of normal metal is
connected to the superconductors by means of ballistic
point contacts that dominate the resistance of the struc-
ture in the normal state. The Thouless energy is given
by Eth = (G⌃/GQ)�S , GQ = e2/⇡~ being the conduc-
tance quantum, G⌃ � GQ being the total conductance
of the contacts and �S being the level spacing in the nor-
mal metal provided the contacts are closed. The DOS in
chaotic cavities has been studied throughout years. [19–
21]

The DOS depends on the ratio of ETh and supercon-
ducting energy gap �, and on the superconducting phase
di↵erence. If the dwell time exceeds the Ehrenfest time,
qualitative features of the DOS do not seem to depend
much on the contact nature and are the same for ballistic,
di↵usive and tunnel contacts. Mesoscopic fluctuations of

FIG. 1. Upper plot: DOS in the central region at zero phase
di↵erence and ETh = � showing the usual minigap around
E = 0 and additionally a secondary gap below E = �. On
the right: Quantum circuit theory [26] diagram of the system
under investigation. A pseudo-terminal labelled with ETh

accounts for random phase shifts between electron and hole
components of the quasiparticle wave functions (not implying
an electric connection to the ground) Lower plot: DOS near
� illustrating the phase dependence of the secondary gap.

the DOS [22, 23] are small provided G � GQ. It looks
like everything is understood, perhaps except a small dip
or peak in the DOS just at the gap edge for the di↵u-
sive case, which has been seen in [3, 5, 24–27], but never
attracted a proper attention. The e↵ect of a large Ehren-
fest time might lead to a more complex proximity density
of states. [19, 34].
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Simple physical picture:
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FIG. 10. (Color online) LDOS in N1 (a) and N2 (b) for interme-
diate values of G1/G2 between e−6 and e6. The white regions in
(a) are regions where N (E)/N0 > 5. Whenever a gap appears in the
central node N2 there appears a gap in the outer nodes N1 as well.

G1/G2 = 1/500 [Fig. 9(a)] and for G1/G2 = 500 [Fig. 9(b)].
Taking this into account, E1

Th and E2
Th can be expressed in

terms of G1/G2. We find

E1
Th = (G1 + G2)/GQδs = "(G2 + G1)

× (3G2 + G1)/(2G1G2),

E2
Th = 2G2/GQδs = "(3G2 + G1)/G1.

In Fig. 10, we show the numerical results for the LDOS
in both normal nodes in dependence of G1/G2 and energy in
the secondary gap region below the superconducting gap edge
". Figure 10(a) shows the result in the outer nodes N1, and
Fig. 10(b) shows the result for the inner node N2. The white
region in Fig. 10(a) denotes N (E)/N0 > 5. The main finding
of our calculations is that the LDOS in the two nodes differs
only where N (E)/N0 > 0 in both nodes. Whenever it is zero
in the central node it is also zero in the outer nodes and vice
versa. We thus find a behavior of the secondary gap similar
to what is already known from the usual minigap [20]. The
width of this gap is not position dependent, only the LDOS
above/below the particular gap edge varies with position.

We thus expect the secondary gap not only in the LDOS of
a singular point, but as well in the integrated DOS of a finite
region. Depending on the parameters, not for every system
does a secondary gap appear. However, if it appears in one
point, it exists also in every other point of the normal part.
The previously used model with only a single normal node
between the superconductors is thus sufficient if the main
interest concerns the existence of the secondary gap and its

properties. However, with this method we cannot calculate
a position-resolved LDOS and thus cannot make statements
about the integrated DOS in the energy interval between
minigap and secondary gap.

IV. 1D SCATTERING MODEL

The secondary gap we found for diffusive Josephson
systems was calculated using Green’s function techniques
in the quasiclassical approximation. Whereas this method is
very powerful in calculating expectation values of physical
observables, it does not provide a simple intuitive explanation
for the absence of Andreev levels in the secondary gap region
and the dependence of these levels on the phase difference ϕ
between the superconductors. In this section, we investigate
a simple 1D scattering model which is able to explain
qualitatively the secondary “smile”-gap. However, since we
deal with diffusive or chaotic scattering systems with large
conductance, we should not expect to reproduce the details of
3D solutions.

A. Single-trajectory Andreev level

We consider a semiclassical path between the left (S1) and
the right (S2) superconductors (Fig. 11) and first recall the char-
acteristics of Andreev bound states between superconductors
on a ballistic trajectory. The bound state energies follow from
the semiclassical quantization condition

2E/ETh − 2 arccos(E/") ± ϕ = 2πn . (9)

Here, the first term is the phase difference acquired between
electron and hole upon traversing the normal region. ETh is
essentially the inverse traversal time, which could also be due
to ballistic motion ∼d/vF for a trajectory of length d. The
second factor is twice the energy-dependent Andreev reflection

FIG. 11. (Color online) Upper plot: Sketch of the system with
a dirty normal metal between two superconductors S1 and S2.
The upper plot shows one possible path connecting left and right
superconductors with a single scattering event. In the lower plot, the
description of excitations following such paths is shown in terms of
an impurity scattering matrix (ST ) in the normal region and Andreev
reflection at the superconductors.
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Taking this into account, E1
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× (3G2 + G1)/(2G1G2),

E2
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Fig. 10(b) shows the result for the inner node N2. The white
region in Fig. 10(a) denotes N (E)/N0 > 5. The main finding
of our calculations is that the LDOS in the two nodes differs
only where N (E)/N0 > 0 in both nodes. Whenever it is zero
in the central node it is also zero in the outer nodes and vice
versa. We thus find a behavior of the secondary gap similar
to what is already known from the usual minigap [20]. The
width of this gap is not position dependent, only the LDOS
above/below the particular gap edge varies with position.

We thus expect the secondary gap not only in the LDOS of
a singular point, but as well in the integrated DOS of a finite
region. Depending on the parameters, not for every system
does a secondary gap appear. However, if it appears in one
point, it exists also in every other point of the normal part.
The previously used model with only a single normal node
between the superconductors is thus sufficient if the main
interest concerns the existence of the secondary gap and its

properties. However, with this method we cannot calculate
a position-resolved LDOS and thus cannot make statements
about the integrated DOS in the energy interval between
minigap and secondary gap.

IV. 1D SCATTERING MODEL

The secondary gap we found for diffusive Josephson
systems was calculated using Green’s function techniques
in the quasiclassical approximation. Whereas this method is
very powerful in calculating expectation values of physical
observables, it does not provide a simple intuitive explanation
for the absence of Andreev levels in the secondary gap region
and the dependence of these levels on the phase difference ϕ
between the superconductors. In this section, we investigate
a simple 1D scattering model which is able to explain
qualitatively the secondary “smile”-gap. However, since we
deal with diffusive or chaotic scattering systems with large
conductance, we should not expect to reproduce the details of
3D solutions.

A. Single-trajectory Andreev level

We consider a semiclassical path between the left (S1) and
the right (S2) superconductors (Fig. 11) and first recall the char-
acteristics of Andreev bound states between superconductors
on a ballistic trajectory. The bound state energies follow from
the semiclassical quantization condition

2E/ETh − 2 arccos(E/") ± ϕ = 2πn . (9)

Here, the first term is the phase difference acquired between
electron and hole upon traversing the normal region. ETh is
essentially the inverse traversal time, which could also be due
to ballistic motion ∼d/vF for a trajectory of length d. The
second factor is twice the energy-dependent Andreev reflection
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a dirty normal metal between two superconductors S1 and S2.
The upper plot shows one possible path connecting left and right
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phase and the third term the phase difference ϕ between the
superconducting order parameters. All terms together have to
add to an integer multiple of 2π .

This equation reproduces two limiting cases. In long
junction limit ETh ≪ #, we replace arccos(E/#) ≈π/2
and find the usual spectrum of Andreev levels En(ϕ) =
(EThπ/2)(2n + 1 ± ϕ/π ). In this case, levels move up and
down in energy linearly with the phase difference ϕ. The lowest
positive energy states have the energies (EThπ/2)(1 ± ϕ/π ).
The levels split with ϕ and cross 0 at ϕ = ±π , corresponding
to the closing of the minigap. In the opposite, short junction
limit ETh → ∞, we neglect the first term in Eq. (9) and find
the Andreev levels E(ϕ) = ±# cos(ϕ/2).

The most interesting case is the “not-so-short” junction
limit ETh ! #. Assuming the energy is close to #, we can
replace E by # in the first term of Eq. (9), and taking n = 0
we obtain

E(ϕ) = # cos(#/ETh ± ϕ/2)

≈#[1 −(#/ETh ± ϕ/2)2/2]. (10)

Thus, we obtain two states shifted in phase by the (small)
parameter #/ETh. They touch the gap at the critical phase
ϕc = ±2#/ETh and the maximal distance to # (at ϕ = 0)
is #3/2E2

Th. This is in quantitative agreement with the
characteristics of the secondary gap found previously within
the quasiclassical Green’s function theory. Note that in the
present approximation, the two levels cross at ϕ = 0. We can
expect that finite backscattering will lead to an anticrossing
and the phase dependence of the level resembles the “smile”
shape of the secondary gap.

B. Single-trajectory Andreev level with scattering

We investigate a simple model for the anticrossing and
calculate the Andreev bound-state energies for a 1D model
with impurity scattering modeled by a scattering matrix.
Although this model takes only backward scattering into the
same trajectory into account and neglects the complex inter-
ference effects of three-dimensional impurity scattering which
are covered by our original Green’s function calculations,
the results provide an understanding of the phase-dependent
Andreev level density of states. The bound-state energies
are obtained from the scattering matrices in the normal
region [34]. We consider the geometry shown in Fig. 11. The
normal scattering matrix encompasses the backscattering at the
impurity as well as the dynamical phases along the trajectory
to the superconductor and is given by

Se
N (E,x) =

(
re2ixE/ETh teiE/ETh

teiE/ETh −re2i(1−x)E/ETh

)
,

where x ∈ [0,1] accounts for the position of the impurity along
the path and t2 = T = 1 −r2 is the transmission probability.
The normal region scattering matrix for holes is related through
Sh

N (E) = Se∗
N (−E).

The scattering matrices for electron-hole conversion at the
interface to the superconductors are given by She

A (E,ϕ) =
exp[−i arccos(E/#) −iϕ/2σ3] and Seh

A (E,ϕ) = She
A (E, −

ϕ), respectively. Note that the σ space is not Nambu space.
An electron arriving at either superconductor is reflected as a

FIG. 12. (Color online) Energy of Andreev levels for a single
mode with transmission probability T [T = 1 in (a) and T = 0.9 in
(b)] through the normal part for ETh = # (red curve), ETh = 2#

(green curve), ETh = 5# (blue curve), and ETh = 10# (yellow
curve). The shaded regions in (b) correspond to variations of the
energies with the position of the scatterer along the trajectory
(described by the parameter x).

hole traveling towards the normal region from the same side,
thus, Andreev reflection is described by a diagonal matrix. The
condition for a bound state reads as

det
[
1 −Se

N (E,x)Seh
A (E,ϕ/2)Sh

N (E,x)She
A (E, −ϕ/2)

]
= 0.

(11)

The bound-state energies in dependence of ϕ are plotted in
Fig. 12 for different values of ETh. Without backscattering
in the normal region, at ϕ = 0 the two Andreev levels
are degenerate [Fig. 12(a)]. Taking into account impurity
scattering in the normal part [Fig. 12(b)], this degeneracy
is lifted (the exact curve depends on the position where
scattering occurs, i.e., on the parameter x). This results in
the characteristic shape of the minigap and the secondary
“smile”-gap below E = #. Figure 12(b) shows the x-averaged
results for Andreev bound states with one scattering event
with T = 0.9 (weak scattering). It is worth mentioning that
only channels without scattering contribute to the zero-energy
Andreev states at ϕ = ±π (not shown). For paths with one or
more scattering events (more scattering matrices in the normal
part), these levels are shifted to higher energies. Thus, we
have shown that the secondary gap can be understood from
the phase dependence of the Andreev level when the junction
length exceeds a length of the order of the superconducting
coherence length, given by ETh ! #. The “smile” shape can
be traced back to the effect of backscattering.

V. CONCLUSION

To summarize, we have calculated the local density of states
for diffusive Josephson systems for a wide range of contact
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phase and the third term the phase difference ϕ between the
superconducting order parameters. All terms together have to
add to an integer multiple of 2π .

This equation reproduces two limiting cases. In long
junction limit ETh ≪ #, we replace arccos(E/#) ≈π/2
and find the usual spectrum of Andreev levels En(ϕ) =
(EThπ/2)(2n + 1 ± ϕ/π ). In this case, levels move up and
down in energy linearly with the phase difference ϕ. The lowest
positive energy states have the energies (EThπ/2)(1 ± ϕ/π ).
The levels split with ϕ and cross 0 at ϕ = ±π , corresponding
to the closing of the minigap. In the opposite, short junction
limit ETh → ∞, we neglect the first term in Eq. (9) and find
the Andreev levels E(ϕ) = ±# cos(ϕ/2).

The most interesting case is the “not-so-short” junction
limit ETh ! #. Assuming the energy is close to #, we can
replace E by # in the first term of Eq. (9), and taking n = 0
we obtain

E(ϕ) = # cos(#/ETh ± ϕ/2)

≈#[1 −(#/ETh ± ϕ/2)2/2]. (10)

Thus, we obtain two states shifted in phase by the (small)
parameter #/ETh. They touch the gap at the critical phase
ϕc = ±2#/ETh and the maximal distance to # (at ϕ = 0)
is #3/2E2

Th. This is in quantitative agreement with the
characteristics of the secondary gap found previously within
the quasiclassical Green’s function theory. Note that in the
present approximation, the two levels cross at ϕ = 0. We can
expect that finite backscattering will lead to an anticrossing
and the phase dependence of the level resembles the “smile”
shape of the secondary gap.

B. Single-trajectory Andreev level with scattering

We investigate a simple model for the anticrossing and
calculate the Andreev bound-state energies for a 1D model
with impurity scattering modeled by a scattering matrix.
Although this model takes only backward scattering into the
same trajectory into account and neglects the complex inter-
ference effects of three-dimensional impurity scattering which
are covered by our original Green’s function calculations,
the results provide an understanding of the phase-dependent
Andreev level density of states. The bound-state energies
are obtained from the scattering matrices in the normal
region [34]. We consider the geometry shown in Fig. 11. The
normal scattering matrix encompasses the backscattering at the
impurity as well as the dynamical phases along the trajectory
to the superconductor and is given by

Se
N (E,x) =

(
re2ixE/ETh teiE/ETh

teiE/ETh −re2i(1−x)E/ETh

)
,

where x ∈ [0,1] accounts for the position of the impurity along
the path and t2 = T = 1 −r2 is the transmission probability.
The normal region scattering matrix for holes is related through
Sh

N (E) = Se∗
N (−E).

The scattering matrices for electron-hole conversion at the
interface to the superconductors are given by She

A (E,ϕ) =
exp[−i arccos(E/#) −iϕ/2σ3] and Seh

A (E,ϕ) = She
A (E, −

ϕ), respectively. Note that the σ space is not Nambu space.
An electron arriving at either superconductor is reflected as a

FIG. 12. (Color online) Energy of Andreev levels for a single
mode with transmission probability T [T = 1 in (a) and T = 0.9 in
(b)] through the normal part for ETh = # (red curve), ETh = 2#

(green curve), ETh = 5# (blue curve), and ETh = 10# (yellow
curve). The shaded regions in (b) correspond to variations of the
energies with the position of the scatterer along the trajectory
(described by the parameter x).

hole traveling towards the normal region from the same side,
thus, Andreev reflection is described by a diagonal matrix. The
condition for a bound state reads as

det
[
1 −Se

N (E,x)Seh
A (E,ϕ/2)Sh

N (E,x)She
A (E, −ϕ/2)

]
= 0.

(11)

The bound-state energies in dependence of ϕ are plotted in
Fig. 12 for different values of ETh. Without backscattering
in the normal region, at ϕ = 0 the two Andreev levels
are degenerate [Fig. 12(a)]. Taking into account impurity
scattering in the normal part [Fig. 12(b)], this degeneracy
is lifted (the exact curve depends on the position where
scattering occurs, i.e., on the parameter x). This results in
the characteristic shape of the minigap and the secondary
“smile”-gap below E = #. Figure 12(b) shows the x-averaged
results for Andreev bound states with one scattering event
with T = 0.9 (weak scattering). It is worth mentioning that
only channels without scattering contribute to the zero-energy
Andreev states at ϕ = ±π (not shown). For paths with one or
more scattering events (more scattering matrices in the normal
part), these levels are shifted to higher energies. Thus, we
have shown that the secondary gap can be understood from
the phase dependence of the Andreev level when the junction
length exceeds a length of the order of the superconducting
coherence length, given by ETh ! #. The “smile” shape can
be traced back to the effect of backscattering.

V. CONCLUSION

To summarize, we have calculated the local density of states
for diffusive Josephson systems for a wide range of contact
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phase and the third term the phase difference ϕ between the
superconducting order parameters. All terms together have to
add to an integer multiple of 2π .

This equation reproduces two limiting cases. In long
junction limit ETh ≪ #, we replace arccos(E/#) ≈π/2
and find the usual spectrum of Andreev levels En(ϕ) =
(EThπ/2)(2n + 1 ± ϕ/π ). In this case, levels move up and
down in energy linearly with the phase difference ϕ. The lowest
positive energy states have the energies (EThπ/2)(1 ± ϕ/π ).
The levels split with ϕ and cross 0 at ϕ = ±π , corresponding
to the closing of the minigap. In the opposite, short junction
limit ETh → ∞, we neglect the first term in Eq. (9) and find
the Andreev levels E(ϕ) = ±# cos(ϕ/2).

The most interesting case is the “not-so-short” junction
limit ETh ! #. Assuming the energy is close to #, we can
replace E by # in the first term of Eq. (9), and taking n = 0
we obtain

E(ϕ) = # cos(#/ETh ± ϕ/2)

≈#[1 −(#/ETh ± ϕ/2)2/2]. (10)

Thus, we obtain two states shifted in phase by the (small)
parameter #/ETh. They touch the gap at the critical phase
ϕc = ±2#/ETh and the maximal distance to # (at ϕ = 0)
is #3/2E2

Th. This is in quantitative agreement with the
characteristics of the secondary gap found previously within
the quasiclassical Green’s function theory. Note that in the
present approximation, the two levels cross at ϕ = 0. We can
expect that finite backscattering will lead to an anticrossing
and the phase dependence of the level resembles the “smile”
shape of the secondary gap.

B. Single-trajectory Andreev level with scattering

We investigate a simple model for the anticrossing and
calculate the Andreev bound-state energies for a 1D model
with impurity scattering modeled by a scattering matrix.
Although this model takes only backward scattering into the
same trajectory into account and neglects the complex inter-
ference effects of three-dimensional impurity scattering which
are covered by our original Green’s function calculations,
the results provide an understanding of the phase-dependent
Andreev level density of states. The bound-state energies
are obtained from the scattering matrices in the normal
region [34]. We consider the geometry shown in Fig. 11. The
normal scattering matrix encompasses the backscattering at the
impurity as well as the dynamical phases along the trajectory
to the superconductor and is given by

Se
N (E,x) =

(
re2ixE/ETh teiE/ETh

teiE/ETh −re2i(1−x)E/ETh

)
,

where x ∈ [0,1] accounts for the position of the impurity along
the path and t2 = T = 1 −r2 is the transmission probability.
The normal region scattering matrix for holes is related through
Sh

N (E) = Se∗
N (−E).

The scattering matrices for electron-hole conversion at the
interface to the superconductors are given by She

A (E,ϕ) =
exp[−i arccos(E/#) −iϕ/2σ3] and Seh

A (E,ϕ) = She
A (E, −

ϕ), respectively. Note that the σ space is not Nambu space.
An electron arriving at either superconductor is reflected as a

FIG. 12. (Color online) Energy of Andreev levels for a single
mode with transmission probability T [T = 1 in (a) and T = 0.9 in
(b)] through the normal part for ETh = # (red curve), ETh = 2#

(green curve), ETh = 5# (blue curve), and ETh = 10# (yellow
curve). The shaded regions in (b) correspond to variations of the
energies with the position of the scatterer along the trajectory
(described by the parameter x).

hole traveling towards the normal region from the same side,
thus, Andreev reflection is described by a diagonal matrix. The
condition for a bound state reads as

det
[
1 −Se

N (E,x)Seh
A (E,ϕ/2)Sh

N (E,x)She
A (E, −ϕ/2)

]
= 0.

(11)

The bound-state energies in dependence of ϕ are plotted in
Fig. 12 for different values of ETh. Without backscattering
in the normal region, at ϕ = 0 the two Andreev levels
are degenerate [Fig. 12(a)]. Taking into account impurity
scattering in the normal part [Fig. 12(b)], this degeneracy
is lifted (the exact curve depends on the position where
scattering occurs, i.e., on the parameter x). This results in
the characteristic shape of the minigap and the secondary
“smile”-gap below E = #. Figure 12(b) shows the x-averaged
results for Andreev bound states with one scattering event
with T = 0.9 (weak scattering). It is worth mentioning that
only channels without scattering contribute to the zero-energy
Andreev states at ϕ = ±π (not shown). For paths with one or
more scattering events (more scattering matrices in the normal
part), these levels are shifted to higher energies. Thus, we
have shown that the secondary gap can be understood from
the phase dependence of the Andreev level when the junction
length exceeds a length of the order of the superconducting
coherence length, given by ETh ! #. The “smile” shape can
be traced back to the effect of backscattering.

V. CONCLUSION

To summarize, we have calculated the local density of states
for diffusive Josephson systems for a wide range of contact
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Ø4-Terminal-Josephson-Ring

• Elimination of internal modes à effective ring scattering matrix

• Andreev levels determined by

„Smile“-Gaps in Multi-Terminal Josephson-contacts

: # in internal modes

: # of external modes

: random scattering matrix (COE)

N
ŝ(i)

det
h
e2i� � ei'̂Ŝh(E)e�i'̂Ŝe(E)

i
= 0

[Beenakker, Phys. Rev. Lett. 67, 3836 (1991)]

~' = ('0,'1,'2,'3)
T

= (0,', 3', 6')

� = arccosE/�

M

Scattering matrix

description

5

FIG. 3: The scattering matrix of the 4T-ring (dimension
P

k Nk ⇥P
k Nk) is composed of the random unitary matrices ŝ(i) of the chaotic

cavities. The dimension of such a matrix is (Ni + Mi + Mi�1) ⇥ (Ni +
Mi + Mi�1).

incorporates the processes of Andreev reflection in the leads
and normal reflection from the device. ŝe,h(E) are electron
and hole scattering matrices in the normal region. Those are
related by sh(E) = �ĝŝ⇤e(�E)ĝ with ĝ = �i�̂y. �̂y is a Pauli
matrix. In this Article, we disregard the e↵ects of magnetic
field and spin-orbit interaction, thus disregarding the spin de-
gree of freedom in ŝe,h(E). e±i'̂ is a diagonal matrix with
'̂ = diag('0,'1,'2,'3) that accounts for Andreev reflection
from the corresponding leads. This form of Beenakker’s equa-
tion relies on the assumption of the same material for all of the
superconducting leads, �i = �. The Andreev reflection phase
� is immediately related to energy via � = arccos(E/�). Since
we consider the limit of a short structure, the scattering ma-
trix ŝe is independent of energy E. The same applies to Ŝ ,
and the energies of the ABS are readily expressed through the
eigenvalues S i of Ŝ , exp(2i�(Ei)) = S i.

Thus, the normal scattering matrix ŝe determines the An-
dreev spectrum. Let us establish this scattering matrix for
the 4T-ring. It is composed from the scattering matrices of
the individual cavities as shown in Fig. 3. A cavity scatter-
ing matrix s(i) (i = 0, 1, 2, 3) describes the scattering between
Ni channels coming from/going to the superconducting ter-
minal i, Mi channels coming from/going to the inner QPC i,
and Mi�1 channels coming from/going to the inner QPC i � 1.
For example, ŝ(0) permits the following block separation cor-
responding to these channel groups,

0
BBBBBBB@

b0
c10
c30

1
CCCCCCCA = ŝ(0)

0
BBBBBBB@

a0
c01
c03

1
CCCCCCCA =

0
BBBBBBBBB@

r(0)
00 t(0)

01 t(0)
03

t(0)
10 r(0)

11 t(0)
13

t(0)
30 t(0)

31 r(0)
33

1
CCCCCCCCCA

0
BBBBBBB@

a0
c01
c03

1
CCCCCCCA , (9)

where a0 and b0 are the vectors of incoming and outgoing
electron amplitudes in the lead 0, respectively, while ci j are
the vectors of the wave amplitudes going from the cavity j to
the cavity i inside the ring. Thus, ŝ(0) is a (N0 + M0 + M3) ⇥
(N0 + M0 + M3) matrix. We obtain ŝe by combining ŝ(i). To

make the combination explicit, we introduce vectors ~a, ~b, and
~c as follows:

~a =

0
BBBBBBBBBBBB@

a0
a1
a2
a3

1
CCCCCCCCCCCCA
, ~b =

0
BBBBBBBBBBBB@

b0
b1
b2
b3

1
CCCCCCCCCCCCA
, ~c =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

c10
c21
c32
c03
c01
c12
c23
c30

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

. (10)

In ~c, four upper (lower) components correspond to clockwise
(counterclockwise) propagation, as shown in Fig. 3. A a com-
plete unitarity matrix of the size K ⇥ K, K ⌘ P

k(Nk + Mk +
Mk�1), that relates these amplitudes is separated into the fol-
lowing blocks:

 
~b
~c

!
=

 
X̂ Ẑ
Ŷ Ŵ

!  
~a
~c

!
, (11)

where X̂, Ŷ , Ẑ, and Ŵ are given by the elements of ŝ(i). X̂ con-
sists of the reflection matrix from and to the channels in the
leads while Ŷ (Ẑ) corresponds to the transmission matrix from
the leads (the ring) to the ring (the leads). The matrix Ŵ de-
scribes reflection and transmission in the ring. By eliminating
~c from Eq. (11), the scattering matrix of the 4T-ring defined
as ~b = ŝe~a is reduced to

ŝe = X̂ + Ẑ
1

1 � Ŵ
Ŷ . (12)

The size of ŝe is
P

k Nk ⇥
P

k Nk.
The numerical procedure to determine the spectrum of ABS

for a given realization of disorder in the 4T-ring could be as
follows: We pick up the ŝ(i) for each cavity from the circular
ensemble of time-reversible scattering matrices and form ŝe
by making use of Eq. (12). For a certain choice of 'k, we form
Ŝ by employing Eq. (8) and then diagonalize Ŝ and deduce the
corresponding ABS energies.

We actually follow all these steps except picking up ŝ(i)

from the circular ensemble. We form these matrices in an
equivalent but di↵erent way that provides numerical e�ciency
and has essential physical significance for understanding the
properties of the 4T-ring.

We outline this way by concentrating on one of the ŝ(i) ma-
trices. For briefness, we identify N ⌘ Ni, 2M ⌘ Mi+Mi�1 and
assume N > 2M. The matrix ŝ(i) is a random (N + 2M)⇥ (N +
2M) unitary matrix. However, N � 2M channels on the termi-
nal side of the cavity are completely redundant. Owing to the
mismatch of the number of channels on the terminal and ring
sides, these channels are completely reflected from the cavity
not playing any role in the formation of the ABS. Therefore,
we can reduce the matrix dimension by considering only 2M
channels in the lead. The resulting 4M⇥4M matrices are best
presented in terms of the transmission eigenvalues from the
terminal to the ring side (or back)33.

Introducing a diagonal matrix with 2M transmission eigen-
values for the cavity i, T̂ (i) = diag(T (i)

1 , T
(i)
2 , · · · , T

(i)
2M). we

[Multi-terminal JJ: Cuevas, Pothier, PRL (2007); Freyn, Doucot, Feinberg, and Mélin, PRL (2011); 

van Heck, Mi, Akhmerov, PRB (2014); Riwar, Houzet, Meyer, Nazarov, Nat. Comm. (2016)]



ØExtreme open limit (analytic solution)
• # of external modes >> # of internal modes

è Every Andreev level M-fold degenerate and localized
between two superconductors
è Energy depends only on a single phase difference

Ø general open systems (numerically)
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4-Terminal Josephson ring

Ej = ±� cos(('j+1 � 'j)/2)

r = M/N ⌧ 1



Topological protection of minigaps (at E=0)

7

FIG. 4: Topological numbers in the 4T-ring.

A. Semiclassical topology

Before describing the peculiarities of the 4T-ring spectrum,
let us explain the topological properties of the setup that arise
at the semi-classical level. As mentioned, the matrix voltage
at ✏ = 0 can be parametrized with real ✓, ⌘. It is instructive
to associate this matrix with a unit vector on the surface of
a sphere, namely, in its northern hemisphere, ✓ being the lat-
itude counted from the equator, ⌘ being the longitude. The
density of states at zero energy is given by ⌫0 sin ✓. There-
fore, if the superconducting proximity gap is present in the
device, the matrix voltages should all be precisely at the equa-
tor, and parametrized by ⌘ only. This is plausible since the
matrix voltages ĜS in the superconducting terminals are also
at the equator, their longitudes corresponding to their super-
conducting phases 'k.

Let us show that the possible gapped states of the 4T-ring
are distinct in topology and characterized by 4 independent
topological numbers. In this sense, the gapped states are simi-
lar to topologically non-equivalent insulators in the solid-state
physics context38. For 3-terminal structures, the topological
analysis of this kind has been suggested and performed in39.

To introduce the topological numbers, let us first concen-
trate on the central ring of the device. Similar to the proce-
dure of defining a vortex in Josephson junction arrays40, we
sum up the di↵erences of ⌘i over the ring contour projecting
each phase di↵erence on (�⇡, ⇡) interval. This defines an in-
teger number n4:

2⇡n4 = P(⌘0 � ⌘3) + P(⌘3 � ⌘2) + P(⌘2 � ⌘1) (22)
+ P(⌘1 � ⌘0); P(↵) ⌘ �⇡ + 2⇡{↵/2⇡ + 1/2},

{· · · } here denotes the fractional part of a number. The pos-
sible values of n4 are 0,±1. The configurations of ⌘k with
di↵erent n4 are topologically distinct since they cannot be
transformed to one another unless one of the phase di↵erences
passes ±⇡. Such a passing, however, would result in a diver-

gent action of the corresponding ballistic connector and there-
fore is not realized.

For Josephson arrays, this number indicates the presence
of an (anti)vortex in the ring40. We stress, however, that in
our system ⌘k are NOT the phases of superconducting pairing
potentials: there is none in the normal structure under consid-
eration. Still, the number defined resembles vorticity.

In addition to this, one can define four other topological
numbers (Fig. 4) where a loop is closed through the termi-
nals. In distinction from the previous definition, the phase
di↵erence between the terminals is not projected on (�⇡, ⇡)
interval. For instance,

2⇡n0 = P('1 � ⌘1) + P(⌘1 � ⌘0) + P(⌘0 � '0) + '0 � '1 (23)

and n1,2,3 are obtained by cyclic permutation of indices. The
justification for such a definition is the fact that nothing spe-
cial happens to the system when the di↵erence of the terminal
phases passes ±⇡, so the topological number should experi-
ence no change. A minor disadvantage of the definition is that
topological numbers are not periodic corresponding to 2⇡ pe-
riodicity in the 3D space of superconducting phases. We note
that the 5 topological numbers defined are not independent,
namely

n4 =
X

k

nk (24)

It is a well-known property of topological insulators that
the interface between two insulators of distinct topology must
conduct: the topology requires such insulators to be separated
by a gapless region. The gapped phases in our device do not
have interfaces: albeit they must be separated by gapless states
in parameter space. We will see this in concrete calculations.

B. Extreme limits: open and closed

As mentioned, the global properties of the spectrum are de-
termined by the ratio of the conductances Gi/Go = M/N. First
we consider the extreme open limit where the ratio is small,
M/N ! 0. In this limit, a particle coming to a cavity in one of
the inner QPC is never reflected back, but transmits directly
to the corresponding superconducting lead. Upon Andreev
reflection in the lead, the particle returns to the same QPC,
transfers it and is Andreev-reflected from another supercon-
ducting terminal to return to the same QPC and complete the
cycle. We reckon that all inner QPC in this limit are indepen-
dent. The k-th QPC hosts a separate bunch of Mk ABS and is
biased by the phase di↵erence 'k � 'k+1. Therefore, all lev-
els of the bunch have the same energy as in a two-terminal
ballistic junction,

E = � cos(('k � 'k+1)/2). (25)

We thus have the case of extreme degeneracy. In Section IV,
we study in detail how this degeneracy is lifted at small but
finite values of Gi/Go.

The result can be derived using the more formal approach
of subsection II C. We observe that in the extreme open limit

Phase differences around possible loops
! " = "/2& + 1/2 − & (" → [−&, &])

2&./ = ! 0/ − 1/ + ! 02 − 0/
+! 12 − 02 + 1/ − 12

.2,3,4 from cyclic permutations

.5 = Σ78/4 .7 ∈ 0, ±1
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FIG. 5: Density of states at ✏ = 0 along the line ('1,'2,'3) =
(1, 3, 6)' in the open regime. The parameter M/N takes values 0.05,
0.1, 0.2, and 0.5 as indicated by labels in the rectangular frames. The
topological numbers of the gapped states are computed and given in
the figure as n0n1n2n3.

all transmission eigenvalues in Eq. (13) are concentrated at
T = 1 (R̂ = 0) since Tc ! 1. Thus, ŝe = K̂ and Beenakker’s
determinant equation (7) becomes

det
⇣
ei2� � Ŝ 0

⌘
= 0,

with

Ŝ 0 = Û⇤ei�̂ÛT, (26)
�̂ = diag('01,'03,'12,'10,'23,'21,'30,'32). (27)

Here we use [Û, ei'̂] = 0. Each element of �̂ is a phase di↵er-
ence, 'i j ⌘ 'i �' j, between adjacent terminals, j = i± 1. The
eigenvalues of Ŝ 0 are therefore just exp(i('k�'k±1)). Compar-
ing this with e2i� reproduces the above result for the energy.

In the opposite, extreme closed limit, 4 cavities are so
strongly coupled as to become a single cavity characterized
by a unitary 4N ⇥ 4N matrix. In circuit-theory description,
the system is represented by a single node connected by bal-
listic contacts Gi

k to the corresponding superconducting reser-
voirs. Despite a great simplification, no analytical results for
the spectrum can be derived in this limit, which, as we will
see, remains rather complex. We note, however, that the topo-
logical number n4 should be zero in this case, since ⌘k are the
same in all cavities and thus no vorticity can be associated
with the ring of the device.

C. Numerics: semiclassics

We present numerical results obtained from the solution of
Kircho↵ equations corresponding to the action (1). To solve
these equations, we employ an iterative algorithm described
in Ref.41.
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FIG. 6: Density of states at ✏ = 0 along the line ('1,'2,'3) =
(1, 3, 6)' in the closed regime. The parameter M/N takes values 1,
2, 5, and 50 for altering thin and thick curves, the smaller values of
the parameter corresponding to smaller peak d.o.s. The topological
numbers of the gapped states nk are given. As expected, no state with
n4 ⌘

P
k nk , 0 occurs in this regime.

Let us first address the spectral properties at small energy.
Generally, we expect a proximity gap to be induced in the
structure. This would result in a gapped spectrum with no
density of states at zero energy. On the other hand, the analyt-
ical results for the open limit show that the ABS come close to
zero any time the phase di↵erence between adjacent terminals
approaches ⇡.

In all illustrations of this article, we explore the spectrum
along a line in the 3-dimensional space, '0 = 0, ('1,'2,'3) =
(A1, A2, A3)'. For most illustrations, we stick to a convenient
choice (A1, A2, A3) = (1, 3, 6). In this case, the spectrum is
periodic in ' with a period 2⇡ and symmetric with respect to
a transformation '! ⇡� '. It su�ces to plot the spectrum in
the interval 0 < ' < ⇡. The phase di↵erence between adjacent
terminals approaches ⇡ for ' = (⇡/6, ⇡/3, ⇡/2, 5⇡/6).

In Figs. 5 and 6 we plot the density of states at zero en-
ergy versus ' for a representative set of values of Gi/Go. The
density of states plotted is averaged over the four cavities.

In Fig. 5 we concentrate on the open regime, Gi/Go ⌘
M/N  0.5. At small values of the parameter, ⌫(0) =
0 almost everywhere except at narrow peaks around ' =
(⇡/6, ⇡/3, ⇡/2, 5⇡/6) where one of the phase di↵erences be-
tween adjacent terminals approaches ⇡ pushing the corre-
sponding ABS to zero energy. We see that these peaks
separate gapped states with di↵erent topological numbers nk
shown in the figure. Upon increasing the parameter, the peaks
get wider, shift, and sometimes merge so that some gapped
states eventually disappear. We notice that the disappearing
states all have non-zero n4 =

P
k nk. This confirms the expec-

tation that only the states n4 = 0 survive in the closed regime.
The density of states slightly increases upon increasing M/N.
More interesting details are revealed on the background of
these general trends. For instance, at ' > 0.95 we see the

< = =/>

• Different topological regions 
characterized by a set ./.2.3.4

• Separated by ‘gapless’ states
• Gaps most pronounced for ‘open’ 

case (> ≫ =)

AB
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FB

FE

FDQuasiclassical Greens functions at E=0:

GH7(J = 0) = 0 K7LM
KN7LM 0

Quasiclassical calculation (circuit theory)
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device.
The considerations in the open regime make the link be-

tween these topological numbers and the smile gaps obvious.
In the open regime Tc is close to 1 and we find bunches of al-
most degenerate Andreev levels, which are separated by large
smile gaps. Since the number of levels in a bunch is Mi, the
number of levels below a smile gap can be i. Mi; ii. Mi + Mj,
j , i; iii. Mi + Mj + Mk, j , i , k, j , k. This gives 14 dis-
tinct possibilities and provides a robust classification of smile
gaps. By virtue of continuity, this classification established in
the open limit is valid in the whole space of parameters where
the smile gaps become smaller and eventually close. In this
way, the topological numbers just defined distinguish the lev-
els that look coequal in a quasi-continuous spectrum.

Let us consider in more detail the crossings of bunches to
see how the smile gaps are separated from each other. The
bunches have finite width which is related to a small but finite
value of 1 � Tc. We find a hard edge on one side with a high
level density, where the bunch is confined by the curve of a
level with ideal transmission T = 1. Since transmission eigen-
values above T = 1 are not possible, no random realization of
the scattering matrices could break these edges. On the other
side, the levels lie less dense and the boundary of the bunch
is defined by the curve of a level corresponding to Tc. Thus
this edge is no hard but rather soft edge. The di↵erent level
densities at the two edges are related to di↵erent densities of
transmission eigenvalues. At T = 1 the transmission distribu-
tion diverges, leading to a very dense distribution of Andreev
levels, whereas at Tc the distribution remains finite. The ex-
ponential suppression of transmission eigenvalues below Tc
directly translates into an exponential suppression of Andreev
levels out of the bunches leading to an exponential protection
of the smile gaps. The number of levels in each bunch is con-
stant and equal to the number of transport modes in the cor-
responding inner QPC. These properties are summarized in
Fig. 12, where the crossings of three bunches, that surround
a smile gap, are sketched. The red lines indicate the finite
widths of the bunches. The number of levels in each bunch
must be conserved at each crossing. If the two bunches have
di↵erent numbers of levels, some levels have to go straight
through the crossing point in order to assure this.

The gap in the transmission distribution and associated
topological protection can be violated by adding “by hand”
an additional isolated transmission eigenvalue into the gap of
the transmission spectrum. This leads to the violation of the
smile gaps: a single Andreev level emerges inside the gap. We
consider this in detail in the next subsection.

F. Stray levels in the smile gaps

Let us start with the numerical calculation of stray levels.
We consider the open limit of small ratio M/N, where An-
dreev levels come in almost degenerate bunches, which are
separated by wide smile gaps. The minimum transmission
Tc, which is determined by the ration M/N, is close to 1 in
this regime. Andreev levels are mostly localized in one of the
inner QPC connecting the neighboring nodes. We break the

FIG. 12: (Color online) Sketch of three bunches that cross at three
points surrounding a smile gap. The bunches have finite width, which
is related to the finite width of the transmission distribution in the
nodes. This finite width is given by the thick (red) curves bounding
the bunches of Andreev levels. At each crossing point the number of
Andreev levels in each crossing bunch must be conserved.

gap in the transmission distribution by adding artificially only
a single transmission eigenvalue. Because of the correspon-
dence of the transmission gap and the smile gaps this leads
to the violation of the smile gaps by a single Andreev level.
While a single Andreev level penetrates into the smile gaps,
all other levels remain in bunches corresponding to a particu-
lar ratio M/N. This allows us in principle to study the closing
of smile gap by adding levels successively.

In this calculation, we choose equal numbers of internal
modes Mi = M = 100 and the ratio M/N = 1/1000. In
Fig. 13 a single transmission eigenvalue at a single node [(a)
node 0, (b) node 1, (c) node 2, (d) node 3] is replaced by Text,
while the transmission distributions at the other nodes are not
changed. The superconducting phases are swept along the line
('1,'2,'3) = (1, 3, 6)'. The panels (a), (c) and (d) show a
single stray level where Text = 0 was chosen. The stray level
approximately follows an isolated curve penetrating various
gaps and crossing the level bunches. The curves look like
superpositions of simple harmonic functions. Of course, the
single level does not actually cross the bunch: rather, the level
joins the bunch on one side while another level splits from the
bunch at the opposite side. This is clearly seen at all crossings.

In (b), we change Text from 0 (the red curve) to Tc (the blue
curve) in equal steps producing a set of curves. We see that
in fact a single additional transmission eigenvalue produces
two isolated ABS. The reason we see only one level in the
panels (a), (c), and (d) is that at Text = 0 one channel is fully
reflected, giving rise to a level at E = �, which is not visible
in the plots. We see that the positions of the isolated ABS
approach the bunches upon Text ! Tc. For Text = Tc the stray
level is absorbed by the bunches, and is not visible.

Figure 14 shows stray levels for the situation where an extra
eigenvalue Text = 0 is replaced at all the nodes. Note that the
total number of ABS is 4M = 400. We find that none of
the stray levels penetrates the three proximity gaps, which are
marked in green in the figure and survive in the closed limit.
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FIG. 16: (Color online) Numerics: Two types of bunch crossings
in the open limit. The Andreev levels and assumed parameters are
referred from Fig. 9(a). The parameters for the number of levels in
the bunches is M0 = 100, M1 = 120, and M3 = 110. The ratio is
M/N = 10�3. Panels (a) and (b) illustrate a regular and an irregular
crossing, respectively. Red lines show excess levels, their number
being M3 �M0 in (a) and M1 �M0 in (b). The dashed blue lines indi-
cate the reference curves of the bunches, cos('10/2) and cos('03/2)
in (a) and cos('10/2) and cos('12/2) in (b).

To simplify the notation, we drop the “hat” symbol for the
matrices K, U, H, S , and R. We expand the scattering matrix
in
p

R up to second order, S ⇡ S 0 + S 1 + S 2, and substitute
the result to the Hamiltonian (35):

He↵(~') ⇡ H0 + H1 + H2, (36)

H0 = i
1 � S 0

1 + S 0
, (37)

H1 = �i2
1

1 + S 0
S 1

1
1 + S 0

, (38)

H2 = i2
1

1 + S 0

(
S 1

1
1 + S 0

S 1 � S 2

)
1

1 + S 0
. (39)

H1 and H2 are of the order
p

R and R, respectively.
Before specifying to our setup, we review a general pertur-

bation theory approach for degenerate levels with perturbation
terms of first and second order. Let |nii be an eigenstate of the
unperturbed Hamiltonian H0|nii = H(0)

n |nii where all states
with the same n are degenerate. To first order, the splitting
of these energy levels is obtained from diagonalization of a
matrix

He↵ = hni|H1|n ji. (40)

To second order, this degeneracy-lifting matrix is con-
tributed by products of the matrix elements of H1 and the ele-
ments of H2:

He↵ =
X

m,n,k

hni|H1|mkihmk |H1|n ji
H(0)

n � H(0)
m

+ hni|H2|n ji. (41)

For the 4-T ring we expand Eq. (21) in
p

R and arrive at

se ⇡ K +
⇣
�
p

R + K
p

RK
⌘

+

(
K
p

RK
p

RK � 1
2

(KR + RK)
)
. (42)

Since S 0 is given in Eq. (26), the unperturbed Hamiltonian is
rewritten as H0 = U⇤ tan(�̂/2 + m⇡)UT with integer m. Its
eigenvector is given by U⇤|ii with a normalized |ii.

In this respect, it is instructive to use an equivalent matrix
G = UT

p
RU as a perturbation parameter. It satisfies G⇤ =

G†. With this, we obtain

UTS 1U⇤ = ei'̂Ôe�i'̂(ÔGÔ �G†) + ei'̂(ÔG†Ô �G)e�i'̂Ô,(43)

UTS 2U⇤ = ei'̂Ôe�i'̂
(

ÔGÔGÔ � 1
2

(ÔGG† +G†GÔ)
)
,

+ei'̂
(

ÔG†ÔG†Ô � 1
2

(ÔG†G +GG†Ô)
)

e�i'̂Ô,

+ei'̂(ÔG†Ô �G)e�i'̂(ÔGÔ �G†) (44)

Eqs. (43) and (44) are used to compute the perturbation cor-
rections.

C. Regular crossings

In this Subsection, we concentrate on the perturbative cor-
rections that arise from the first order terms in

p
R in the e↵ec-

tive Hamiltonian (36). In the extreme open limit (M/N ! 0),
R vanishes resulting in a Mi-fold degeneracy of the levels in
the bunch associated with the i-th QPC. Generally, one ex-
pects this degeneracy to be lifted already in the first non-
vanishing order of the perturbation theory. This, however,
is not the case in our 4T-ring setup. As a matter of fact,
the matrix elements of the first order perturbations vanish,
hn|H1|n0i = 0, for all states n,n0 that belong to the same bunch.
However, this does not imply that the first-order terms are
completely irrelevant: they play a role in the vicinity of the
crossing points of two bunches j,i removing the Mi +Mj-fold
degeneracy near this point. Here, H1 mixes the levels of di↵er-
ent bunches. In the following, we concentrate on the vicinity
of a specific crossing. The results can be straightforwardly
extended to all other crossings of the same type.

We consider the crossing of the bunches following
cos('10/2) and cos('03/2) along the line ('1,'2,'3) =
(1, 3, 6)'. The ABSs corresponding to '10 and '03 are local-
ized at QPC 0 and 3 (and connecting terminals), respectively.
The crossing occurs at ' = 2⇡/7 as shown in Fig. 9 (a). The
e↵ective Hamiltonian including 0th and 1st order terms reads

H0 + H1 = U⇤
"
tan ('̂/2) � 2i

1
1 + ei'̂ (UT S 1U⇤)

1
1 + ei'̂

#
UT ,

Topological protection of the smile gap
# of levels in a bunch is determined by # of open 
transport channels in the QPCs 
à topological numbers !",!$,!%,!&
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FIG. 7: Number of ABS N(✏) versus energy at ' = 0.3⇡ (upper
panel) and 0.6⇡ (lower panel) on the line ('1,'2,'3) = (1, 3, 6)' in
the open regime. The parameter M/N takes values 10�3, 10�2, 0.1,
0.2, and 0.5 for altering thin and thick curves. NABS = 4M.

emergence and stabilization of the gapped state (111 � 3) that
was absent in the limit of vanishing M/N. At M/N > 0.5 we
enter the closed regime. The peaks get progressively higher
and wider yet saturate in both height and width in the extreme
closed limit M/N ! 1 (the curve at M/N = 50 represents
this limit with the accuracy of the plot). We observe that the
state (111� 3) disappeares at su�ciently big M/N while most
of the gapped states remain in the extreme closed limit.

These figures represent the spectral characteristics at small
energy. Next we consider all the energies of the ABS span-
ning the interval 0 < ✏/� < 1. We compute the total number
of ABS N(✏) with energy smaller than ✏ making use of Eq. (6)
at the same line in phase space taking two values of ', 0.3⇡
and 0.6⇡. Figure 7 gives the results in the open regime where
NABS = 4M. The curves at small values of M/N are very much
step-like, corresponding to the picture of separate, almost de-
generate bunches of levels in each inner QPC. N(✏) changes
within the bunches and has plateaus at N(✏) = M, 2M, 3M
representing the spectral gaps — “smile” gaps — between the
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FIG. 8: Number of ABS N(✏) versus energy at ' = 0.3⇡ (left panel)
and 0.6⇡ (right panel) on the line ('1,'2,'3) = (1, 3, 6)' in the closed
regime. The parameter M/N takes values 1, 2, 5, and 50 from the
lower to the upper curve. The arrows indicate the formation of the
smile gap at N(✏) = 0.5NABS. NABS = 2N.

bunches. We see that upon increasing M/N the curve becomes
smoother and the smile gaps eventually disapear, at least at
these particular values of the phases. For ' = 0.3⇡ this is also
associated with the closing of the proximity gap, while the
latter survives at ' = 0.6⇡ up to energies of at least 0.2�.

Upon further increase of M/N we enter the closed regime
illustrated in Fig. 8. It is interesting to note that the smile gaps
that have disappeared at moderate M/N reappear at big values
of the parameter, at least at N(✏) = N = NABS/2, and the N(✏)
curves get sharper.

We explain this with the following consideration. We
note that the 4-terminal system under consideration becomes
equivalent to a 2-terminal one at special symmetry lines in
phase space23 where the four phases have only two distinct
values (upon restricting to an (�⇡, ⇡) interval). Our favorite
line ('1,'2,'3) = (1, 3, 6)' is chosen to cross the symmetry
lines. For instance, at ' = 2⇡/3, where '0,'2,'3 = 0 while
'1 = 2⇡/3. Thus we deal with 3N incoming channels from su-
perconducting terminals at zero phase and N channels coming
from the terminal at non-zero phase. This restricts the num-
ber of ABS to N, to be contrasted with the total number of
ABS NABS = 2N permitted in the 4-terminal device. The N
non-permitted channels, as we will see in the next subsection,
stick to the gap edge. A smile gap can thus be formed at this
special line, and will persist in the vicinity of it. This is the
smile gap seen at ' = 0.6⇡ that is close to 2⇡/3. A similar ef-
fect takes place near ' = ⇡/3 that is not at the symmetry line
but is subject to the same restriction sticking N ABS energies
to the gap edge.

D. Numerical results: diagonalization

To find the ABS energies, we numerically diagonalize the
matrix Ŝ [Eq. (8)] for a certain choice of the random scattering
matrices in the nodes. We plot the resulting energies along
lines in the 3D space of phases. For all plots presented, the
parameters are chosen to provide NABS = 400 bound states in
the energy interval [0,�], except the panels (e), (f), and (g) in
the figures where NABS = 200.

' = 0.001 → 0.5

!. = /012/4
5 = 0.37



ØStray level to break topological protection
• For !/# < 1/2 the scattering matrices are characterized by transmission

eigenvalue distributions with a minimal transmission eigenvalue '(.

è Introducing one extra transmission eigenvalues ')*+ in the interval [0, '(]
leads to stray level
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• Proximity density of states still has surprises beyond minigap
• Secondary gap feature at E<Δ in a cavity between superconductors 

with !"# > Δ [1]
• Phase-dependent closing in a “Smile”-shape à smile gap
• Robust against asymmetries, weak spatial dependence and weak 

backscattering [2]
• The level number in the DOS between minigap and smile gap is set by 

the number of open transport channels [3]
• Fluctuations of the smile gap are universal
• Multi-terminal Josephson junctions provide a rich structure of multiple 

gaps (smile and mini) [4]
• Gaps are protected by different levels of topology 



”Smile”-gap in the density of states of a cavity between superconductors
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The density of Andreev levels in a normal metal (N) in contact with two superconductors (S) is
known to exhibit an induced minigap related to the inverse dwell time. We predict a small secondary
gap just below the superconducting gap edge - a feature that has been overlooked so far in numerous
microscopic studies of the density of states in SNS structures. In a generic structure with N being
a chaotic cavity, the secondary gap is the widest at zero phase bias. It closes at some finite phase
bias, forming the shape of a ”smile”. Asymmetric couplings give even richer gap structures near
the phase di↵erence ⇡. All the features found should be amendable to experimental detection in
high-resolution low-temperature tunneling spectroscopy.

PACS numbers: 74.45.+c,74.78.Na,74.78.-w,

The modification of the density of states (DOS) in a
normal metal by a superconductor in its proximity has
been discovered almost 50 years ago [1]. Soon afterwards,
it was predicted theoretically for di↵usive structures that
a so-called minigap of the order of the inverse dwell time
in the normal metal (or the Thouless energy) appears
in the spectrum [2]. The energy-dependent DOS reflects
the energy scale of electron-hole decoherence, and is sen-
sitive to the distance, the geometry and the properties
of the contact between the normal metal and the su-
perconductor [3–5]. The details of the local density of
states in proximity structures have been investigated ex-
perimentally many years later [6–10] and the theoretical
predictions have been confirmed [11–13] in quite a detail.

Substantial interest has been paid to the density of
states in a finite normal metal between two superconduct-
ing leads with di↵erent superconducting phases [14, 15].
The di↵erence between di↵usive [5] and classical ballistic
[16] dynamics has been investigated [17]. Many publi-
cations have addressed the dependence of the minigap
on the competition between dwell and Ehrenfest time
[18, 19]. The most generic model in this context is that
of a chaotic cavity, where a piece of normal metal is
connected to the superconductors by means of ballistic
point contacts that dominate the resistance of the struc-
ture in the normal state. The Thouless energy is given
by Eth = (G⌃/GQ)�S , GQ = e2/⇡~ being the conduc-
tance quantum, G⌃ � GQ being the total conductance
of the contacts and �S being the level spacing in the nor-
mal metal provided the contacts are closed. The DOS in
chaotic cavities has been studied throughout years. [19–
21]

The DOS depends on the ratio of ETh and supercon-
ducting energy gap �, and on the superconducting phase
di↵erence. If the dwell time exceeds the Ehrenfest time,
qualitative features of the DOS do not seem to depend
much on the contact nature and are the same for ballistic,
di↵usive and tunnel contacts. Mesoscopic fluctuations of

FIG. 1. Upper plot: DOS in the central region at zero phase
di↵erence and ETh = � showing the usual minigap around
E = 0 and additionally a secondary gap below E = �. On
the right: Quantum circuit theory [26] diagram of the system
under investigation. A pseudo-terminal labelled with ETh

accounts for random phase shifts between electron and hole
components of the quasiparticle wave functions (not implying
an electric connection to the ground) Lower plot: DOS near
� illustrating the phase dependence of the secondary gap.

the DOS [22, 23] are small provided G � GQ. It looks
like everything is understood, perhaps except a small dip
or peak in the DOS just at the gap edge for the di↵u-
sive case, which has been seen in [3, 5, 24–27], but never
attracted a proper attention. The e↵ect of a large Ehren-
fest time might lead to a more complex proximity density
of states. [19, 34].
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or peak in the DOS just at the gap edge for the di↵u-
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device.
The considerations in the open regime make the link be-

tween these topological numbers and the smile gaps obvious.
In the open regime Tc is close to 1 and we find bunches of al-
most degenerate Andreev levels, which are separated by large
smile gaps. Since the number of levels in a bunch is Mi, the
number of levels below a smile gap can be i. Mi; ii. Mi + Mj,
j , i; iii. Mi + Mj + Mk, j , i , k, j , k. This gives 14 dis-
tinct possibilities and provides a robust classification of smile
gaps. By virtue of continuity, this classification established in
the open limit is valid in the whole space of parameters where
the smile gaps become smaller and eventually close. In this
way, the topological numbers just defined distinguish the lev-
els that look coequal in a quasi-continuous spectrum.

Let us consider in more detail the crossings of bunches to
see how the smile gaps are separated from each other. The
bunches have finite width which is related to a small but finite
value of 1 � Tc. We find a hard edge on one side with a high
level density, where the bunch is confined by the curve of a
level with ideal transmission T = 1. Since transmission eigen-
values above T = 1 are not possible, no random realization of
the scattering matrices could break these edges. On the other
side, the levels lie less dense and the boundary of the bunch
is defined by the curve of a level corresponding to Tc. Thus
this edge is no hard but rather soft edge. The di↵erent level
densities at the two edges are related to di↵erent densities of
transmission eigenvalues. At T = 1 the transmission distribu-
tion diverges, leading to a very dense distribution of Andreev
levels, whereas at Tc the distribution remains finite. The ex-
ponential suppression of transmission eigenvalues below Tc
directly translates into an exponential suppression of Andreev
levels out of the bunches leading to an exponential protection
of the smile gaps. The number of levels in each bunch is con-
stant and equal to the number of transport modes in the cor-
responding inner QPC. These properties are summarized in
Fig. 12, where the crossings of three bunches, that surround
a smile gap, are sketched. The red lines indicate the finite
widths of the bunches. The number of levels in each bunch
must be conserved at each crossing. If the two bunches have
di↵erent numbers of levels, some levels have to go straight
through the crossing point in order to assure this.

The gap in the transmission distribution and associated
topological protection can be violated by adding “by hand”
an additional isolated transmission eigenvalue into the gap of
the transmission spectrum. This leads to the violation of the
smile gaps: a single Andreev level emerges inside the gap. We
consider this in detail in the next subsection.

F. Stray levels in the smile gaps

Let us start with the numerical calculation of stray levels.
We consider the open limit of small ratio M/N, where An-
dreev levels come in almost degenerate bunches, which are
separated by wide smile gaps. The minimum transmission
Tc, which is determined by the ration M/N, is close to 1 in
this regime. Andreev levels are mostly localized in one of the
inner QPC connecting the neighboring nodes. We break the

FIG. 12: (Color online) Sketch of three bunches that cross at three
points surrounding a smile gap. The bunches have finite width, which
is related to the finite width of the transmission distribution in the
nodes. This finite width is given by the thick (red) curves bounding
the bunches of Andreev levels. At each crossing point the number of
Andreev levels in each crossing bunch must be conserved.

gap in the transmission distribution by adding artificially only
a single transmission eigenvalue. Because of the correspon-
dence of the transmission gap and the smile gaps this leads
to the violation of the smile gaps by a single Andreev level.
While a single Andreev level penetrates into the smile gaps,
all other levels remain in bunches corresponding to a particu-
lar ratio M/N. This allows us in principle to study the closing
of smile gap by adding levels successively.

In this calculation, we choose equal numbers of internal
modes Mi = M = 100 and the ratio M/N = 1/1000. In
Fig. 13 a single transmission eigenvalue at a single node [(a)
node 0, (b) node 1, (c) node 2, (d) node 3] is replaced by Text,
while the transmission distributions at the other nodes are not
changed. The superconducting phases are swept along the line
('1,'2,'3) = (1, 3, 6)'. The panels (a), (c) and (d) show a
single stray level where Text = 0 was chosen. The stray level
approximately follows an isolated curve penetrating various
gaps and crossing the level bunches. The curves look like
superpositions of simple harmonic functions. Of course, the
single level does not actually cross the bunch: rather, the level
joins the bunch on one side while another level splits from the
bunch at the opposite side. This is clearly seen at all crossings.

In (b), we change Text from 0 (the red curve) to Tc (the blue
curve) in equal steps producing a set of curves. We see that
in fact a single additional transmission eigenvalue produces
two isolated ABS. The reason we see only one level in the
panels (a), (c), and (d) is that at Text = 0 one channel is fully
reflected, giving rise to a level at E = �, which is not visible
in the plots. We see that the positions of the isolated ABS
approach the bunches upon Text ! Tc. For Text = Tc the stray
level is absorbed by the bunches, and is not visible.

Figure 14 shows stray levels for the situation where an extra
eigenvalue Text = 0 is replaced at all the nodes. Note that the
total number of ABS is 4M = 400. We find that none of
the stray levels penetrates the three proximity gaps, which are
marked in green in the figure and survive in the closed limit.
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