

Low-dimensional disordered electronic systems

(theoretical aspects)

Part III

Alexander D. Mirlin

Research Center Karslruhe & University Karlsruhe & PNPI St. Petersburg

http://www-tkm.physik.uni-karlsruhe.de/~mirlin/

Evers, ADM "Anderson transitions", arXiv:0707.4378

Disordered electronic systems: Symmetry classification

Altland, Zirnbauer '97

$$H = \left(\begin{array}{cc} \mathbf{0} & \mathbf{t} \\ \mathbf{t}^{\dagger} & \mathbf{0} \end{array}\right)$$

Bogoliubov-de Gennes classes

\mathbf{T}	spin rot.	chiral	p-h	\mathbf{symbol}
+	+	_	+	CI
—	+	—	+	\mathbf{C}
+	—	—	+	DIII
_	—	—	+	D

$$oldsymbol{H} = \left(egin{array}{cc} \mathrm{h} & oldsymbol{\Delta} \ -oldsymbol{\Delta}^* & -\mathrm{h}^T \end{array}
ight)$$

Disordered electronic systems: Symmetry classification

Ham.	RMT	Т	\mathbf{S}	compact	non-compact	$\sigma ext{-model}$	$\sigma ext{-model compact}$
class				symmetric space	symmetric space	$\mathbf{B} \mathbf{F}$	$\text{sector} \mathcal{M}_F$
Wigne	er-Dyson	clas	ses				
Α	GUE	—	\pm	$\mathrm{U}(N)$	$\mathrm{GL}(N,\mathbb{C})/\mathrm{U}(N)$	AIII AIII	$\mathrm{U}(2n)/\mathrm{U}(n)\! imes\!\mathrm{U}(n)$
AI	GOE	+	+	$\mathrm{U}(N)/\mathrm{O}(N)$	$\operatorname{GL}(N,\mathbb{R})/\operatorname{O}(N)$	BDI CII	$\mathrm{Sp}(4n)/\mathrm{Sp}(2n)\! imes\!\mathrm{Sp}(2n)$
AII	GSE	+	—	${ m U}(2N)/{ m Sp}(2N)$	$\mathrm{U}^*(2N)/\mathrm{Sp}(2N)$	CII BDI	$\mathrm{O}(2n)/\mathrm{O}(n)\! imes\!\mathrm{O}(n)$
chiral	classes						
AIII	chGUE	_	±	$\mathrm{U}(p+q)/\mathrm{U}(p)\! imes\!\mathrm{U}(q)$	$\mathrm{U}(p,q)/\mathrm{U}(p)\! imes\!\mathrm{U}(q)$	$\mathbf{A} \mathbf{A}$	$\mathrm{U}(n)$
BDI	chGOE	+	+	$\mathrm{SO}(p+q)/\mathrm{SO}(p)\! imes\!\mathrm{SO}(q)$	$\mathrm{SO}(p,q)/\mathrm{SO}(p)\! imes\!\mathrm{SO}(q)$	$\mathbf{AI} \mathbf{AII}$	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$
CII	chGSE	+	_	$\mathrm{Sp}(2p+2q)/\mathrm{Sp}(2p){ imes}\mathrm{Sp}(2q)$	$\mathrm{Sp}(2p,2q)/\mathrm{Sp}(2p){ imes}\mathrm{Sp}(2q)$	$\mathbf{AII} \mathbf{AI}$	$\mathrm{U}(n)/\mathrm{O}(n)$
Bogoli	ubov - de	e Ge	enne	es classes			
С		—	+	$\mathrm{Sp}(2N)$	$\mathrm{Sp}(2N,\mathbb{C})/\mathrm{Sp}(2N)$	DIII CI	${ m Sp}(2n)/{ m U}(n)$
CI		+	+	${ m Sp}(2N)/{ m U}(N)$	$\mathrm{Sp}(2N,\mathbb{R})/\mathrm{U}(N)$	$\mathbf{D} \mathbf{C}$	$\operatorname{Sp}(2n)$
BD		—	—	$\mathrm{SO}(N)$	$\mathrm{SO}(N,\mathbb{C})/\mathrm{SO}(N)$	CI DIII	${ m O}(2n)/{ m U}(n)$
DIII		+		${ m SO}(2N)/{ m U}(N)$	${ m SO}^*(2N)/{ m U}(N)$	C D	$\mathrm{O}(n)$

Disordered wires: DMPK approach

Dorokhov '82; Mello, Pereyra, Kumar '88

$${f transfer matrix} \quad \left(egin{array}{c} R^{
m out} \ R^{
m in} \end{array}
ight) = M \left(egin{array}{c} L^{
m in} \ L^{
m out} \end{array}
ight)$$

current conservation:

 $|R^{ ext{out}}|^2 - |R^{ ext{in}}|^2 = |L^{ ext{in}}|^2 - |L^{ ext{out}}|^2 \quad \longrightarrow \ M \in G = \mathrm{U}(N,N)$

$$\begin{array}{ll} \textbf{Cartan decomposition} & M = \left(\begin{array}{c} u & 0 \\ 0 & u' \end{array} \right) \left(\begin{array}{c} \cosh \hat{x} & \sinh \hat{x} \\ \sinh \hat{x} & \cosh \hat{x} \end{array} \right) \left(\begin{array}{c} v & 0 \\ 0 & v' \end{array} \right) \end{array}$$

 $\hat{x} = \operatorname{diag}(x_1, \dots, x_N) -$ "radial coordinates"; left/right matrices ("angular coordinates") — elements of $K = \mathrm{U}(N) \times \mathrm{U}(N)$ \longrightarrow Brownian motion on G/K, described by DMPK equation

$$rac{d {\cal P}}{dL} = rac{1}{2\ell \gamma} \sum_{i=1}^N rac{\partial}{\partial x_i} J(x) rac{\partial}{\partial x_i} J^{-1}(x) \, \, {\cal P} \, \, .$$

J(x) – Jacobian of transformation to the radial coordinates

Disordered wires: DMPK approach (cont'd)

WD and BdG classes: $0 < x_1 < x_2 < \ldots < x_N$,

$$J(x) \, = \, \prod_{i < j}^{N} \, \prod_{\pm} | \sinh(x_i \pm x_j) |^{m_o} \, \prod_{k}^{N} | \sinh 2x_k |^{m_l} \prod_{l}^{N} | \sinh x_l |^{m_s}$$

Chiral classes: $x_1 < x_2 < \ldots < x_N$,

 m_0, m_l, m_s — multiplicities of ordinary, long, and short roots.

$${f Conductance} \qquad G=s\sum_{n=1}^N T_n \;,\qquad T_n={1\over \cosh^2 x_n}\;,\qquad s-{
m degeneracy}$$

Disordered wires: Transfer matrix spaces

Ham.	transfer mat	rix	tr.matr.	m_o	m_l	m_s
\mathbf{class}	symmetric sp	oace	\mathbf{class}			
Wigne	er-Dyson classes					
\mathbf{A}	$\mathrm{U}(p+q)/\mathrm{U}(p)$:	$ imes { m U}(q)$	AIII	2	1	2 p-q
\mathbf{AI}	$\mathrm{Sp}(2N,\mathbb{R})/\mathrm{U}$	(N)	\mathbf{CI}	1	1	0
АТТ	$SO^{*}(2N)/II(N)$	N even	DIII-e	1	1	0
AII	50(21)/0(1)	N odd	DIII-o	4		4
chiral	classes					
AIII	$\operatorname{GL}(N,\mathbb{C})/\operatorname{U}($	(N)	Α	2	0	0
BDI	$\operatorname{GL}(N,\mathbb{R})/\operatorname{O}($	(N)	AI	1	0	0
CII	$\mathrm{U}^*(2N)/\mathrm{Sp}(2)$	2N)	AII	4	0	0
Bogoli	ubov - de Gennes c	lasses				
С	$\mathrm{Sp}(2p,2q)/\mathrm{Sp}(2p)$	$ imes { m Sp}(2q)$	CII	4	3	4 p-q
CI	$\mathrm{Sp}(2N,\mathbb{C})/\mathrm{Sp}(2N)$	(2N)	С	2	2	0
BD	${ m O}(p,q)/{ m O}(p) imes$	$\mathrm{O}(q)$	BDI	1	0	p-q
DIII	SO(N C)/SO(N)	N even	D	ں ا	0	0
	SU(N, C)/SU(N)	N odd	В	4	U	2

Disordered wires: Conventional localization

 $ext{standard localization, Wigner-Dyson classes} \ (m_l = 1, \ m_o = eta, \ m_s = 0).$ $ext{long-wire limit:} \quad 1 \gg T_1 \gg T_2 \gg \dots$

$$rac{d \mathcal{P}(x_k)}{dL} = rac{1}{2\gamma\ell} rac{\partial^2 \mathcal{P}}{\partial x_k^2} - rac{1}{\xi_k} rac{\partial \mathcal{P}}{\partial x_k}, \hspace{1cm} \xi_k^{-1} = [1+eta(k-1)]/\gamma\ell$$

advection-diffusion equation, diffusion constant $1/2\gamma \ell$, drift velocity $1/\xi_1$ solution: Gaussian form with $\langle x_k \rangle = L/\xi_k$, $\operatorname{var}(x_k) = L/\gamma \ell$ $\longrightarrow \log of \ conductance \ g \simeq s/\cosh^2 x_1$ has Gaussian distribution with

$$-\langle \ln g
angle = 2L/\gamma \ell \; ; \qquad ext{var}(\ln g) = 4L/\gamma \ell \; .$$

On the side of atypically large g the distribution is cut at $g \sim 1$; average conductance is determined by this cutoff: $-\ln\langle g \rangle = L/2\gamma l$.

Typical and average localization length: $\xi_{typ} = \gamma \ell$; $\xi_{av} = 4\gamma \ell$.BdG classes C, CI – similar behavior

Delocalization in disordered wires: Chiral classes

Chiral classes (AIII, BDI, CII), BdG classes (BD, DIII): $m_l = 0 \longrightarrow$ no repulsion between x_i and $-x_i$ odd number of channels $N \longrightarrow \langle x_{(N+1)/2} \rangle = 0 \longrightarrow$

$$egin{aligned} -\langle \ln g
angle &= \left(rac{8L}{\pi \gamma \ell}
ight)^{\!\!1/2}; & ext{var}(\ln g) = \left(4-rac{8}{\pi}
ight)rac{L}{\gamma \ell}; \ \langle g
angle &= (2\gamma \ell/\pi L)^{1/2}; & ext{var}(g) = (8\gamma \ell/9\pi L)^{1/2}. \end{aligned}$$

- stretched-exponential decay of typical conductance
- very strong fluctuations
- very slow $L^{-1/2}$ decay of average conductance (slower than Ohm's law!)

Dyson '53; ...

Disordered wires with perfectly conducting channels

 $m_s
eq 0 \longrightarrow ext{repulsion from zero} \longrightarrow ext{zero eigenvalue(s)} x_i = 0$ $\longrightarrow ext{ perfectly transmitting channels}$

Two types:

• classes A, C, BD:

arbitrary number (|p - q|) of perfectly transmitting modes.

Realization: Quantum Hall edge states (IQHE, SQHE, TQHE)

- classes AII, DIII : single perfectly transmitting mode σ -model language: $\pi_1(\mathcal{M}_F) = \mathbb{Z}_2 \longrightarrow$ topological term with $\theta = \pi$ allowed. Realizations: models with spin-orbit interaction and odd number of channels:
- nanotubes (quasi-1D graphene-based structures) with decoupled valleys
- edge states in quantum spin Hall effect

Zirnbauer'92; ADM, Müller-Groeling, Zirnbauer'94; Ando, Suzuura '02; Takane'04; Kane and Mele '05; Bernevig, Hughes, Zhang, Science'06

Mechanisms of Anderson criticality in 2D

"Common wisdom": all states are localized in 2D

In fact, in 9 out of 10 symmetry classes the system can escape localization!

 \longrightarrow variety of critical points

Mechanisms of delocalization & criticality in 2D:

• broken spin-rotation invariance \longrightarrow antilocalization, metallic phase, MIT classes AII, D, DIII

• topological term $\pi_2(\mathcal{M}) = \mathbb{Z}$ (quantum-Hall-type) classes A, C, D : IQHE, SQHE, TQHE

• topological term $\pi_2(\mathcal{M}) = \mathbb{Z}_2$ classes AII, CII

• chiral classes: vanishing β -function, line of fixed points classes AIII, BDI, CII

• Wess-Zumino term (random Dirac fermions, related to chiral anomaly) classes AIII, CI, DIII

Spin quantum Hall effect

• disordered d-wave superconductor (class C):

charge not conserved but spin conserved

- time-reversal invariance broken:
- $d_{x^2-y^2} + i d_{xy}$ order parameter
- strong magnetic field
- Haldane-Rezayi *d*-wave paired state of composite fermions at $\nu = 1/2$

\longrightarrow SQH plateau transition: spin Hall conductivity quantized

$$j^Z_x = \pmb{\sigma^s_{xy}}\left(-rac{dB^z(y)}{dy}
ight)$$

Model: SU(2) modification of the Chalker-Coddington network Kagalovsky, Horovitz, Avishai, Chalker '99; Senthil, Marston, Fisher '99

Spin quantum Hall effect (cont'd)

Similar to IQH transition **but**:

- DoS critical $ho(E) \propto E^{\mu}$
- mapping to percolation: analytical evaluation of
 - DOS exponent $\mu = 1/7$
 - localization length exponent $\nu = 4/3$
 - lowest multifractal exponents: $\Delta_2 = -1/4, \ \Delta_3 = -3/4$
- numerics: analytics confirmed

multifractality spectrum: Δ_q , $f(\alpha)$ not parabolic

Gruzberg, Ludwig, Read '99; Beamond, Cardy, Chalker '02; Evers, Mildenberger, ADM '03

Thermal quantum Hall effect

• disordered p-wave superconductor (class D):

neither charge nor spin conserved; only energy conservation

- \rightarrow TQH plateau transition: thermal Hall conductivity quantized
- very rich phase diagram: insulator, quantized Hall, and metallic phases
 - \longrightarrow both QH and Anderson (metal-insulator) transitions
 - \longrightarrow multicritical point

Senthil, Fisher'00; Bocquet et al '00; Read, Green'00, Read, Ludwig'01; Chalker et al '02; Mildenberger, Evers, Narayanan, Chalker, ADM'07

Graphene: 2D massless Dirac fermions

The gap vanishes at 2 points K, K' (valleys) In the vicinity of K, K' the spectrum is of massless Dirac-fermion type:

$$H_K = v_0(k_x\sigma_x+k_y\sigma_y), \qquad H_{K'} = v_0(-k_x\sigma_x+k_y\sigma_y)$$

 $v_0 \simeq 10^8 {
m \, cm/s} - {
m effective "light velocity"}, {
m sublattice space} \longrightarrow {
m isospin}$

Graphene: Transport experiments

Novoselov, Geim et al; Zhang, Tan, Stormer, and Kim; Nature 2005

• minimal conductivity $\approx e^2/h$ per spin/valley, almost *T*-independent in the range $1 \div 300$ K. Quantum criticality?

- anomalous, odd-integer Quantum Hall Effect $\sigma_{xy} = (2n+1) \times 2e^2/h$
- Quantum Hall Effect up to room temperature (semiconductor record: 30 K)

Clean graphene: basis and notations

 $\begin{array}{l} \mbox{Hamiltonian} & \longrightarrow 4 \times 4 \mbox{ matrix operating in:} \\ \mbox{AB space of the two sublattices } (\sigma \mbox{ Pauli matrices}), \\ & \hline K - K' \mbox{ space of the valleys } (\tau \mbox{ Pauli matrices}). \end{array}$

Four-component wave function is chosen as

$$\Psi = \{\phi_{AK}, \phi_{BK}, \phi_{BK'}, \phi_{AK'}\}^T.$$

Hamiltonian in this basis has the form:

$$H = v_0 \tau_3 \sigma \mathbf{k}.$$

Green function:

$$G_0^{R(A)}(arepsilon,\mathrm{k}) = rac{arepsilon+v_0 au_3\sigma\mathrm{k}}{(arepsilon\pm i0)^2-v_0^2k^2}.$$

Clean graphene: symmetries

Space of valleys K-K': Isospin $\Lambda_x = \sigma_3 \tau_1, \ \Lambda_y = \sigma_3 \tau_2, \ \Lambda_z = \sigma_0 \tau_3.$ Time inversion Chirality $T_0: \quad H = \sigma_1 \tau_1 H^T \sigma_1 \tau_1$ $C_0: \quad H = -\sigma_3 \tau_0 H \sigma_3 \tau_0$ Combinations with $\Lambda_{x,y,z}$ $T_x: \quad H = \sigma_2 \tau_0 H^T \sigma_2 \tau_0$ $C_x: \quad H=-\sigma_0 au_1H\sigma_0 au_1$ $T_{u}: \quad H = \sigma_2 \tau_3 H^T \sigma_2 \tau_3$ $C_{y}: \quad H = -\sigma_{0}\tau_{2}H\sigma_{0}\tau_{2}$ $T_z: \quad H = \sigma_1 \tau_2 H^T \sigma_1 \tau_2$ $C_z: \quad H = -\sigma_3 \tau_3 H \sigma_3 \tau_3$

Spatial isotropy \Rightarrow $T_{x,y}$ and $C_{x,y}$ occur simultaneously \Rightarrow T_{\perp} and C_{\perp}

Types of chiral disorder

- (i) bond disorder: randomness in hopping elements t_{ij} (C_z -symmetry)
- (ii) infinitely strong on-site impurities unitary limit: all bonds adjacent to the impurity are effectively cut = bond disorder (C_z -symmetry)
- (iii) dislocations: random non-Abelian gauge field $(C_0$ -symmetry)
- (iv) random magnetic field, ripples (all four symmetries $C_{0,x,y,z}$)

Symmetries of various types of disorder in graphene

		Λ_{\perp}	Λ_z	T_0	T_{\perp}	T_z	C_0	C_{\perp}	C_{z}	CT_0	CT_{\perp}	CT_z
$\sigma_0 au_0$	$lpha_0$	+	+	+	+	+	_	_		_	_	
$\sigma_{\{1,2\}} au_{\{1,2\}}$	eta_{ot}		—	+	_	_	+	_	_	+	_	_
$\sigma_{1,2} au_0$	$ \gamma_{\perp} $	_	+	+	_	+	+	_	+	+	—	+
$\sigma_0 au_{1,2}$	eta_z	_	—	+	—	_	_	—	+	_	—	+
$\sigma_3 au_3$	γ_z		+	+	—	+	_	+	—	_	+	—
$\sigma_{3}\tau_{1,2}$	eta_0	_	_	—	—	+	_	_	+	+	—	_
$\sigma_0 au_3$	γ_0	—	+	_	+	—	_	+	—	+	—	+
$\sigma_{1,2} au_3$	$lpha_{\perp}$	+	+	_	—	—	+	+	+	_	—	—
$\sigma_3 au_0$	$lpha_z$	+	+	_	—	—	_	—	_	+	+	+

Related works:

- S. Guruswamy, A. LeClair, and A.W.W. Ludwig, Nucl. Phys. B 583, 475 (2000)
- E. McCann, K. Kechedzhi, V.I. Fal'ko, H. Suzuura, T. Ando, and B.L. Altshuler, PRL 97, 146805 (2006)
- I.L. Aleiner and K.B. Efetov, PRL 97, 236801 (2006)

Symmetries of various types of disorder in graphene

		Λ_{\perp}	Λ_z	T_0	T_{\perp}	T_{z}	C_0	C_{\perp}	C_z	CT_0	CT_{\perp}	CT_z
$\sigma_0 au_0$	$lpha_0$	+	+	+	+	+	_	_	_	—	_	_
$\sigma_{\{1,2\}} au_{\{1,2\}}$	eta_{ot}		—	+	_		+	_	—	+		_
$\sigma_{1,2} au_0$	γ_{\perp}	_	+	+	_	+	+	_	+	+	_	+
$\sigma_0 au_{1,2}$	eta_z	_	_	+	_	_	_	_	+	_	_	+
$\sigma_3 au_3$	γ_z		+	+	_	+	_	+	_	_	+	_
$\sigma_3\tau_{1,2}$	eta_0	_	_	_	_	+	_	_	+	+	_	_
$\sigma_0 au_3$	γ_0		+	—	+	—	_	+	_	+	_	+
$\sigma_{1,2} au_3$	$lpha_{\perp}$	+	+		_	—	+	+	+	_	_	_
$\sigma_3 au_0$	$lpha_z$	+	+		_	—	-	—	—	+	+	+

Generic Gaussian disorder: thermodynamic and transport properties depend on

$$lpha = lpha_0 + eta_0 + \gamma_0 + lpha_ot + eta_ot + \gamma_ot + \gamma_ot + lpha_z + eta_z + \gamma_z
onumber \ lpha_{
m tr} = rac{1}{2}(lpha_0 + eta_0 + \gamma_0) + lpha_ot + eta_ot + eta_ot + \gamma_ot + \gamma_$$

2D disordered Dirac fermions: "ultraviolet RG" (history)

• random bond Ising model (random mass) V.S. Dotsenko and V.S. Dotsenko '83

• quantum Hall effect (random mass, scalar and vector potential) A.W.W. Ludwig, M.P.A. Fisher, R. Shankar, and G. Grinstein '94

disordered d-wave superconductors

 A. A. Nersesyan, A. M. Tsvelik, and F. Wenger '94,'95
 M. Bocquet, D. Serban, and M.R. Zirnbauer '00
 A. Altland, B.D. Simons, and M.R. Zirnbauer '02

• Dirac fermions $+ C_z$ chiral disorder (e.g., random-field XY model) S. Guruswamy, A. LeClair, and A.W.W. Ludwig '00

• disordered graphene (T_0 invariance + some hierarchy of couplings) I.L. Aleiner and K.B. Efetov '06.

Ultraviolet (Ballistic) Renormalization Group

 $v_0 = ext{const}, \quad \varepsilon ext{ and disorder flow:}$

RG stops at length L_{ε} where ε reaches UV cutoff Δ Logarithmic renormalization of disorder $\alpha_{\rm tr}$

$$\longrightarrow ~~ \sigma(arepsilon) = rac{e^2}{\pi^2 lpha_{
m tr}(L_arepsilon)}$$

2D disordered Dirac fermions: complete one-loop RG

$$\begin{split} \frac{d\alpha_0}{d\log L} &= 2\alpha_0(\alpha_0 + \beta_0 + \gamma_0 + \alpha_\perp + \beta_\perp + \gamma_\perp + \alpha_z + \beta_z + \gamma_z) + 2\alpha_\perp \alpha_z + \beta_\perp \beta_z + 2\gamma_\perp \gamma_z, \\ \frac{d\alpha_\perp}{d\log L} &= 2(2\alpha_0\alpha_z + \beta_0\beta_z + 2\gamma_0\gamma_z), \\ \frac{d\alpha_z}{d\log L} &= -2\alpha_z(\alpha_0 + \beta_0 + \gamma_0 - \alpha_\perp - \beta_\perp - \gamma_\perp + \alpha_z + \beta_z + \gamma_z) + 2\alpha_0\alpha_\perp + \beta_0\beta_\perp + 2\gamma_0\gamma_\perp, \\ \frac{d\beta_0}{d\log L} &= 2[\beta_0(\alpha_0 - \gamma_0 + \alpha_\perp + \alpha_z - \gamma_z) + \alpha_\perp \beta_z + \alpha_z\beta_\perp + \beta_\perp \gamma_0], \\ \frac{d\beta_\perp}{d\log L} &= 4(\alpha_0\beta_z + \alpha_z\beta_0 + \beta_0\gamma_0 + \beta_\perp \gamma_\perp + \beta_z\gamma_z), \\ \frac{d\beta_z}{d\log L} &= 2[-\beta_z(\alpha_0 - \gamma_0 - \alpha_\perp + \alpha_z - \gamma_z) + \alpha_0\beta_\perp + \alpha_\perp \beta_0 + \beta_\perp \gamma_z], \\ \frac{d\gamma_0}{d\log L} &= 2\gamma_0(\alpha_0 - \beta_0 + \gamma_0 + \alpha_\perp - \beta_\perp + \gamma_\perp + \alpha_z - \beta_z + \gamma_z) + 2\alpha_\perp \gamma_z + 2\alpha_z\gamma_\perp + \beta_0\beta_\perp, \\ \frac{d\gamma_\perp}{d\log L} &= 4\alpha_0\gamma_z + 4\alpha_z\gamma_0 + \beta_0^2 + \beta_\perp^2 + \beta_z^2, \\ \frac{d\gamma_z}{d\log L} &= -2\gamma_z(\alpha_0 - \alpha_\perp + \alpha_z - \beta_0 + \beta_\perp - \beta_z + \gamma_0 - \gamma_\perp + \gamma_z) + 2\alpha_0\gamma_\perp + 2\alpha_\perp \gamma_0 + \beta_\perp \beta_z. \\ \frac{d\varepsilon}{d\log L} &= \varepsilon(1 + \alpha_0 + \beta_0 + \gamma_0 + \alpha_\perp + \beta_\perp + \gamma_\perp + \alpha_z + \beta_z + \gamma_z). \end{split}$$

Conductivity at $\mu = 0$

For generic disorder, the Drude result $\sigma = 4 \times e^2/\pi h$ at $\mu = 0$ does not make much sense: Anderson localization will drive $\sigma \to 0$.

Experiment: $\sigma \approx 4 \times e^2/h$ independent of TQuantum criticality ?

Can one have finite σ ?

Yes, if disorder either

(i) preserves one of chiral symmetries

or

(ii) is of long-range character (does not mix the valleys)

Critical states of disordered graphene

Disorder	Symmetries	Class	Conductivity	QHE
Vacancies	C_z,T_0	BDI	$pprox 4e^2/\pi h$	normal
Vacancies + RMF	C_z	AIII	$pprox 4e^2/\pi h$	normal
$\sigma_3 au_{1,2} ext{ disorder}$	C_z,T_z	\mathbf{CII}	$pprox 4e^2/\pi h$	normal
Dislocations	C_0,T_0	\mathbf{CI}	$4e^2/\pi h$	chiral
Dislocations + RMF	$oldsymbol{C}_0$	AIII	$4e^2/\pi h$	chiral
Ripples, RMF	Λ_z,C_0	$2 \times \text{AIII}$	$4e^2/\pi h$	odd-chiral
Charged impurities	Λ_z,T_\perp	2 imes AII	$4\sigma^{**}_{Sp} ext{ or } \infty$	odd
random Dirac mass: $\sigma_3 au_{0,3}$	$\Lambda_z,CT_{\!\perp}$	$2{ imes}{ m D}$	$4\dot{e^2}/\pi h$	odd
Charged imp. $+$ (RMF, ripples)	Λ_z	$2\! imes\!\mathrm{A}$	$4 oldsymbol{\sigma}_U^*$	odd

C_0 -chirality $H = -\sigma_3 H \sigma_3$: symmetry consideration

Disorder structures: $\sigma_{1,2}\tau_3$, $\sigma_{1,2}\tau_{1,2}$, $\sigma_{1,2}\tau_0$ Couplings: α_{\perp} (breaks T_0), β_{\perp} (preserves T_0), γ_{\perp} (preserves T_0) Symmetry classes: C_0 + no T_0 = AIII (ChUE); C_0 + T_0 = CI (BdG) Generic C_0 -disorder \Rightarrow Non-Abelian vector potential problem Nersesyan, Tsvelik, and Wenger '94, '95; Fendley and Konik '00; Ludwig '00

RG equations (cf. Altland, Simons, and Zirnbauer '02):

$$rac{\partial lpha_{ot}}{\partial \log L} = 0, \qquad rac{\partial eta_{ot}}{\partial \log L} = 4 eta_{ot} \gamma_{ot}, \qquad rac{\partial \gamma_{ot}}{\partial \log L} = eta_{ot}^2.$$

 $\text{DoS:} \quad \rho(\varepsilon) \propto |\varepsilon|^{1/7} \ \ (\text{generic} \ C_0); \quad \rho(\varepsilon) \propto |\varepsilon|^{(1-\alpha_\perp)/(1+\alpha_\perp)} \ \ (\alpha_\perp \ \text{only})$

Conductivity at $\mu = 0$: C_0 -chiral disorder

 ${
m Current \ operator} \quad {
m j}=ev_0 au_3\sigma$

relation between G^R and G^A & $\sigma_3 j^x = i j^y$, $\sigma_3 j^y = -i j^x$,

 \longrightarrow transform the conductivity at $\mu = 0$ to RR + AA form:

$$\sigma^{xx} = -rac{1}{\pi}\sum_{lpha=x,y}\int d^2(r-r')\,{
m Tr}\Big[j^lpha G^R(0;{
m r},{
m r}')j^lpha G^R(0;{
m r}',{
m r})\Big] \ \ \equiv \sigma_{RR}.$$

Gauge invariance: $p \rightarrow p + eA$ constant vector potential

$$\sigma_{RR} = -rac{2}{\pi} \, rac{\partial^2}{\partial A^2} \, {
m Tr} \, \ln G^R ~~ \longrightarrow ~~ \sigma_{RR} = 0 ~~ (?!)$$

But: contribution with no impurity lines \longrightarrow anomaly:

UV divergence \Rightarrow shift of p is not legitimate (cf. Schwinger model '62).

Universal conductivity at $\mu = 0$ for C_0 -chiral disorder

Calculate explicitly $(\delta - \text{infinitesimal Im}\Sigma)$

$$\sigma = -rac{8e^2v_0^2}{\pi\hbar} \int rac{d^2k}{(2\pi)^2} rac{\delta^2}{(\delta^2 + v_0^2k^2)^2} = rac{2e^2}{\pi^2\hbar} = rac{4}{\pi}rac{e^2}{h}$$

for C_0 -chiral disorder $\sigma(\mu = 0)$ does not depend on disorder strength

Alternative derivation: use Ward identity

$$-ie(r-r')G^{R}(0;r,r') = [G^{R}jG^{R}](0;r,r')$$

and integrate by parts \longrightarrow only surface contribution remains:

$$\sigma = -rac{ev_0}{4\pi^3} \oint d\mathbf{k}_n \operatorname{Tr} [\mathrm{j} \, G^R(\mathbf{k})] = rac{e^2}{\pi^3 \hbar} \oint rac{d\mathbf{k}_n \mathbf{k}}{k^2} = rac{4}{\pi} rac{e^2}{h}$$

Related works: Ludwig, Fisher, Shankar, Grinstein '94; Tsvelik '95

C_z chirality: $H = -\sigma_3 \tau_3 H \sigma_3 \tau_3$

Related works: Gade, Wegner '91; Hikami, Shirai, Wegner '93; Guruswamy, LeClair, Ludwig '00; Ryu, Mudry, Furusaki, Ludwig '07

RG equations:

$$rac{\partial lpha_{\perp}}{\partial \log L} = 2eta_0eta_z, \qquad rac{\partial eta_0}{\partial \log L} = rac{\partial eta_z}{\partial \log L} = 2lpha_{\perp}(eta_0+eta_z), \qquad rac{\partial \gamma_{\perp}}{\partial \log L} = eta_0^2+eta_z^2$$

DoS: $ho(arepsilon) \propto arepsilon^{-1} \exp(-\#|\log arepsilon|^{2/3})$

Conductivity: $\sigma = rac{4e^2}{\pi h} \left[1 + rac{1}{4} (eta_0 - eta_z)^2 + \cdots
ight]$

Long-range disorder

Smooth random potential does not scatter between valleys Reduced Hamiltonian: $H = v_0 \sigma \mathbf{k} + \sigma_\mu V_\mu(\mathbf{r})$

Ludwig, Fisher, Shankar, Grinstein '94; Ostrovsky, Gornyi, ADM '06-07

Disorder couplings:
$$lpha_0 = rac{\langle V_0^2
angle}{2\pi v_0^2}, \qquad lpha_\perp = rac{\langle V_x^2 + V_y^2
angle}{2\pi v_0^2}, \qquad lpha_z = rac{\langle V_z^2
angle}{2\pi v_0^2}$$

Symmetries:

- α_0 disorder \Rightarrow *T***-invariance** $H = \sigma_y H^T \sigma_y \Rightarrow$ AII (GSE)
- α_{\perp} disorder \Rightarrow *C*-invariance $H = -\sigma_z H \sigma_z \Rightarrow$ AIII (ChUE)
- α_z disorder \Rightarrow *CT***-invariance** $H = -\sigma_x H^T \sigma_x \Rightarrow$ D (BdG)
- generic long-range disorder \Rightarrow A (GUE)

Ultraviolet RG:

$$rac{\partial lpha_0}{\partial \ln L} = 2(lpha_0 + lpha_z)(lpha_ot + lpha_0), \quad rac{\partial lpha_ot}{\partial \ln L} = 4lpha_0 lpha_z, \quad rac{\partial lpha_z}{\partial \ln L} = 2(lpha_0 + lpha_z)(lpha_ot - lpha_z)$$

Long-range disorder (cont'd)

• Class D (random mass):

Disorder is marginally irrelevant \implies diffusion never occurs DoS: $\rho(\varepsilon) = \frac{\varepsilon}{\pi v_0^2} 2\alpha_z \log \frac{\Delta}{\varepsilon}$ Conductivity: $\sigma = \frac{4e^2}{\pi h}$

• Class AIII (random vector potential): C_0/C_z chiral disorder; considered above

DOS: $ho(arepsilon) \propto |arepsilon|^{(1-lpha_{\perp})/(1+lpha_{\perp})}$ Conductivity: $\sigma = rac{4e^2}{\pi h}$

Long-range disorder: unitary symmetry

Generic long-range disorder breaks all symmetries \implies class A (GUE) Effective infrared theory is Pruisken's unitary sigma model with θ -term:

$$S[Q] = \frac{1}{4} \operatorname{Str} \left[-\frac{\sigma_{xx}}{2} (\nabla Q)^2 + \left(\sigma_{xy} + \frac{1}{2} \right) Q \nabla_x Q \nabla_y Q \right] \Rightarrow -\frac{\sigma_{xx}}{8} \operatorname{Str}(\nabla Q)^2 + i\pi N[Q]$$

Compact (FF) sector of the model:

$$oldsymbol{Q}_{ ext{FF}} \in \mathcal{M}_{ ext{F}} = rac{oldsymbol{U}(2n)}{oldsymbol{U}(n) imes oldsymbol{U}(n)}$$

Topological term takes values $N[Q] \in \pi_2(\mathcal{M}_F) = \mathbb{Z}$ Vacuum angle $\theta = \pi$ in the absence of magnetic field due to anomaly

$$\Rightarrow$$
 Quantum Hall critical point $\sigma = 4\sigma_U^* \approx rac{2e^2}{h}$

Long-range disorder: symplectic symmetry

Diagonal disorder α_0 (charged impurities) preserves *T*-inversion symmetry \implies class AII (GSE)

Partition function is real \implies Im S = 0 or π

 $ext{Compact sector:} \quad Q_{ ext{FF}} \in \mathcal{M}_{ ext{F}} = rac{O(4n)}{O(2n) imes O(2n)}$

$$\Longrightarrow \quad \pi_2(\mathcal{M}_{\mathrm{F}}) = egin{cases} \mathbb{Z} imes \mathbb{Z}, & n = 1; \ \mathbb{Z}_2, & n \geq 2 \end{cases}$$

At n = 1 $\mathcal{M}_{\mathrm{F}} = S^2 \times S^2 / \mathbb{Z}_2 \approx [\mathrm{Cooperons}] \times [\mathrm{diffusons}]$

Symplectic sigma-model with $\theta = \pi$ term: $S[Q] = -\frac{\sigma_{xx}}{16} \operatorname{Str}(\nabla Q)^2 + i\pi N[Q]$

Long-range disorder: symplectic symmetry (cont'd)

Symplectic sigma-model with $\theta = \pi$ term: $S[Q] = -\frac{\sigma_{xx}}{16} \operatorname{Str}(\nabla Q)^2 + i\pi N[Q]$

Similar to Pruisken sigma-model of QHE at criticality

Instantons suppress localization

Numerics needed

Long-range potential disorder: numerics

Recent numerics <u>confirm</u> the absence of localization but the new critical point is <u>not found</u>.

Bardarson, Tworzydło, Brouwer, Beenakker <u>arXiv:0705.0886</u>

Nomura, Koshino, Ryu <u>arXiv:0705.1607</u>

Comments

- If an additional attractive fixed point exists, different microscopic models may flow into different fixed points
- Coulomb interaction (Altshuler-Aronov, Finkelstein) favors a novel fixed point
- Novel fixed point (if/when exists) is expected to describe the Quantum Spin Hall transition (in the presence of disorder)

Odd quantum Hall effect

Decoupled valleys + magnetic field \implies unitary sigma model with anomalous topological term:

$$S[Q] = rac{1}{4} \operatorname{Str} \left[-rac{\sigma_{xx}}{2} (
abla Q)^2 + \left(\sigma_{xy} + rac{1}{2}
ight) Q
abla_x Q
abla_y Q
ight] \implies ext{odd-integer QHE}$$

generic (valley-mixing) disorder \implies conventional IQHE weakly valley-mixing disorder \implies even plateaus narrow, emerge at low T

Decoupled valleys

Weakly mixed valleys

Estimate: $T_{\rm mix} \sim 10 - 50 {
m mK}$

Chiral quantum Hall effect

 C_0 -chiral disorder \iff random vector potential

Atiyah-Singer theorem:

In magnetic field, zeroth Landau level remains degenerate!!!

(Aharonov and Casher '79)

Within zeroth Landau level Hall effect is classical

Decoupled valleys (ripples)

Weakly mixed valleys (dislocations)

