

- UNIVERSITÄT KARLSRUHE

Low-dimensional disordered electronic systems (theoretical aspects)

Part II

Alexander D. Mirlin

Research Center Karslruhe \& University Karlsruhe \& PNPI St. Petersburg
http://www-tkm.physik.uni-karlsruhe.de/~mirlin/
Evers, ADM "Anderson transitions", arXiv:0707.4378

Electron-electron interaction effects: renormalization and dephasing

- Renormalization

Virtual processes, energy transfer $\gtrsim T$
become stronger when T is lowered; in low d singular in the limit $T \rightarrow 0$
Altshuler, Aronov '79 (review: '85) ;
Zala, Narozhny, Aleiner, Phys. Rev. B 64, 214204 (2001) ;
see also Gornyi, ADM, Phys. Rev. B 69, 045313 (2004)

Cf.: Fermi-liquid renormalizations, Kondo, Luttinger-liquid power laws, Fermi-edge singularity ...

- Dephasing

Real inelastic scattering processes, energy transfer $\lesssim T$ become weaker when T is lowered, vanishing as $T \rightarrow 0$

Altshuler, Aronov, Khmelnitskii '82 ; see also Aleiner, Altshuler, Gershenson, Waves Random Media 9, 201 (1999)

Interaction correction to conductivity: Exchange

Interaction correction to conductivity: Hartree

Interaction correction to conductivity: Diffusive regime diffusive regime: $\quad \boldsymbol{T} \boldsymbol{\tau} \ll \mathbf{1}$ typical diagram (exchange):

$\Delta \sigma(\Omega) \simeq \frac{2}{\Omega} \frac{e^{2}}{2 \pi} \int(d p) v_{x}^{2}\left[G_{\epsilon}^{R}(p)\right]^{2}\left[G_{\epsilon}^{A}(p)\right]^{2} \int(d q) \int_{0}^{\Omega} \frac{d \epsilon}{2 \pi} \int_{\epsilon}^{\infty} \frac{d \omega}{2 \pi} \frac{i U(q, \omega)}{\left(D q^{2}-i \omega\right)^{2} \tau^{2}}$
$\int(d p) v_{x}^{2}\left[G^{R} G^{A}\right]^{2}=4 \pi \tau^{2} \nu D \longrightarrow \Delta \sigma(\Omega)=\frac{\sigma_{0}}{\pi^{2} \Omega} \int_{0}^{\Omega} d \epsilon \int(d q) \int_{\epsilon}^{\infty} d \omega \frac{i U(q, \omega)}{\left(D q^{2}-i \omega\right)^{2}}$ short-range interaction $U(q, \omega) \rightarrow \boldsymbol{U}(0)$

$$
\longrightarrow \Delta \sigma(\Omega) \sim \sigma_{0} U(0) \int_{l_{\Omega}^{-1}}^{l^{-1}} \frac{(d q)}{D q^{2}} \sim e^{2} \nu U(0) \times \begin{cases}\ln \Omega \tau, & d=2 \\ \left(\frac{\Omega}{D}\right)^{d / 2-1}, & d \neq 2\end{cases}
$$

Interaction correction to conductivity (cont'd)

$$
\text { For } T \gg \Omega: \quad \Omega \longrightarrow T
$$

Coulomb interaction, all exchange diagrams:

$$
\Delta \sigma(\Omega)=e^{2} \times \begin{cases}\frac{1}{2 \pi^{2}} \ln T \tau, & d=2 \\ \sim\left(\frac{T}{D}\right)^{d / 2-1}, & d \neq 2\end{cases}
$$

Exchange + Hartree: overall factor

$$
1+3\left[1-\frac{\ln \left(1+F_{0}^{\sigma}\right)}{F_{0}^{\sigma}}\right]
$$

Ballistic regime $T \boldsymbol{T} \gg 1, \quad 2 \mathrm{D}: \quad \ln T \tau \longrightarrow\left(E_{F}-T\right) \tau$
In the ballistic regime, prefactor of the Hartree term depends not only on $\boldsymbol{F}_{0}^{\sigma}$, but also on all $\boldsymbol{F}_{m}^{\rho}, \boldsymbol{F}_{m}^{\boldsymbol{\sigma}}$ with $\boldsymbol{m} \neq 0$ and on disorder range

Interaction correction to tunneling DOS

Tunneling DOS:

$$
\begin{aligned}
\nu(\epsilon) & =-\frac{1}{\pi} \operatorname{Im} G^{R}(r, r ; \epsilon) \\
& =-\frac{1}{\pi} \operatorname{Im} \int(d p) G^{R}(p ; \epsilon)
\end{aligned}
$$

$$
\frac{\Delta \nu(\epsilon)}{\nu_{0}}=-\frac{1}{\pi} \operatorname{Im} \int(d q) \int_{\epsilon}^{\infty} d \omega\left[U(q, \omega)-2 \overline{U\left(p^{\prime}-p^{\prime \prime}, 0\right)}\right] \frac{1}{\left(D q^{2}-i \omega\right)^{2}}
$$

For short-range interaction

$$
\frac{\Delta \nu(\epsilon)}{\nu_{0}}=-\frac{1}{\pi}\left[U(q=0)-2 \overline{U\left(p^{\prime}-p^{\prime \prime}\right)}\right] \int(d q) \frac{D q^{2}}{\left(D q^{2}\right)^{2}+\epsilon^{2}} \sim \frac{\left.\Delta \sigma(\Omega)\right|_{\Omega \sim \epsilon}}{\sigma_{0}}
$$

However, for Coulomb interaction the TDOS correction is parametrically larger!

Interaction correction to TDOS: Coulomb interaction

Dynamically screened Coulomb interaction, 2D :

$$
U(q, \omega)=\frac{2 \pi e^{2}}{q+\kappa \frac{D q^{2}}{D q^{2}-i \omega}}, \quad \kappa=4 \pi e^{2} \nu \quad \longrightarrow \text { poor screening for } D q^{2} \ll \omega
$$

Exchange correction to TDOS:

$$
\frac{\Delta \nu(\epsilon)}{\nu_{0}}=-\frac{1}{2 \pi^{2}} \operatorname{Im} \int q d q \int_{\epsilon}^{\infty} d \omega \frac{2 \pi e^{2}}{q(D q \kappa-i \omega)\left(D q^{2}-i \omega\right)}
$$

In the range $D q^{2} \ll \omega \ll D q \kappa$ the integral is of $\log ^{2}$ type: $\int \frac{d q d \omega}{D \kappa q \omega}$

$$
\frac{\Delta \nu(\epsilon)}{\nu_{0}}=-\frac{1}{8 \pi^{2} \nu D}\left[\ln ^{2} \frac{D \kappa^{2}}{\epsilon}-\ln ^{2} D \kappa^{2} \tau\right]
$$

This does not happen for $\Delta \sigma$! Reason: gauge invariance
There is a range of parameters where $\Delta \sigma$ is still small, whereas $\Delta \nu$ is not!

$$
\frac{\nu(\epsilon)}{\nu_{0}}=\exp \left\{-\frac{1}{8 \pi^{2} \nu D}\left[\ln ^{2} \frac{D \kappa^{2}}{\epsilon}-\ln ^{2} D \kappa^{2} \tau\right]\right\}
$$

Anderson transitions: Renormalization by e-e interaction

Renormalization Group: Finkelstein'83 σ-model with interaction

Anderson transitions: depending on the symmetry class and the character (short- vs. long-range) of the interaction, different situations:

- interaction RG-irrelevant; fixed points and critical indices unchanged Example: broken spin-rotation invariance + short-range interaction
- interaction RG-relevant; new fixed point and critical indices; phase diagram qualitatively unchanged

Example: broken spin-rotation invariance $+1 / r$ Coulomb interaction

- interaction not only RG-relevant but also leads to some instabilities and new phases
Example: preserved spin-rotation invariance + short/long-range interaction

Reviews: Finkelstein '90 ; Belitz, Kirkpatrick '94

MIT in a 2D gas with strong interaction

Kravchenko et al '94, ...

Punnoose, Finkelstein, Science '05 (number of valleys $N \gg 1$; in practice, $N=2$ sufficient)

Dephasing by e-e interaction

inelastic e-e scattering processes $\longrightarrow \quad$ electron decays, $\quad \tau_{\phi}^{-1} \propto T^{p}$ interacting electrons \longrightarrow Nyquist noise

$$
\text { FDT: } \quad\langle\varphi \varphi\rangle_{q, \omega}=-\operatorname{Im} U(q, \omega) \operatorname{coth} \frac{\omega}{2 T}
$$

Noise can be considered as classical only for $\omega \ll T$

$$
\begin{gathered}
U(q, \omega)=\frac{1}{U_{0}^{-1}(q)+\Pi(q, \omega)} \simeq \Pi^{-1}(q, \omega)=\frac{D q^{2}-i \omega}{\nu D q^{2}} \longrightarrow-\operatorname{Im} U \simeq \frac{\omega}{\nu D q^{2}} \\
\tau_{\phi}^{-1} \simeq \int_{?}^{l_{T}^{-1}}(d q) \frac{T}{\nu D q^{2}} \quad \text { Equivalently: } \tau_{\phi}^{-1} \sim \frac{1}{\nu D^{d / 2}} T \int_{?}^{T} d \omega \omega^{d / 2-2}
\end{gathered}
$$

2D, quasi-1D : IR (low-q) divergence!
weak localization: self-consistent cutoff: $q_{\min }=l_{\phi}^{-1}, \omega_{\min }=\tau_{\phi}^{-1}$

$$
\tau_{\phi}^{-1} \sim\left(\frac{T}{\nu D^{1 / 2}}\right)^{2 / 3}, \quad \text { quasi-1D } \quad \tau_{\phi}^{-1} \sim \frac{T}{g} \ln g, 2 \mathrm{D}
$$

Altshuler, Aronov, Khmelnitskii '82

Dephasing by e-e interaction (cont'd)

- IR divergence: cutoff depends on geometry of the phenomenon. Aharonov-Bohm oscillations: harmonics decay as $\exp \left\{-2 \pi n R / l_{\phi}^{\mathrm{AB}}\right\}$ trajectories should encircle the ring! \longrightarrow cutoff: $\boldsymbol{q}_{\min } \sim \boldsymbol{R}^{-1}$

$$
1 / \tau_{\phi}^{\mathrm{AB}} \sim \frac{T R}{\nu D}, \quad l_{\phi}^{\mathrm{AB}}=\left(D \tau_{\phi}^{\mathrm{AB}}\right)^{1 / 2} \sim \frac{\nu^{1 / 2} D}{T^{1 / 2} R^{1 / 2}}
$$

Ludwig, ADM '04

- Near Anderson transition: dynamical scaling finite frequency $\omega \longrightarrow$ length scale $\quad l_{\omega} \propto \omega^{-1 / z}$
\longrightarrow smearing of the transition, width $\propto \omega^{\zeta} \quad \zeta=1 / \nu z$ e-e interaction \longrightarrow dephasing \longrightarrow length scale $l_{\phi} \propto T^{-1 / z_{T}}$ \longrightarrow smearing of the transition, width $\propto T^{\kappa} \quad \kappa=1 / \nu z_{T}$

2D electron gas in strong magnetic fields

Standard realization: GaAs/AlGaAs heterostructures
Disorder: charged donors

\bigcirc	- -	donors n_{i}
\triangle -		
$\mathrm{d} \sim 1$		2DEG
\downarrow	AlGaAs	
	GaAs	

Typical experimental parameters:

$$
\begin{aligned}
n_{e}, n_{i} \sim & (1 \div 3) \cdot 10^{11} \mathrm{~cm}^{-2}, \quad d \sim 100 \mathrm{~nm} \\
& \longrightarrow k_{F} d \sim 10 \gg 1 \\
& \longrightarrow \text { weak smooth disorder } \\
& \longrightarrow \text { high mobility }
\end{aligned}
$$

Magnetotransport

resistivity tensor:
$\boldsymbol{\rho}_{\boldsymbol{x} \boldsymbol{x}}=\boldsymbol{E}_{\boldsymbol{x}} / \boldsymbol{j}_{\boldsymbol{x}}$
$\rho_{y x}=E_{y} / j_{x} \quad$ Hall resistivity

classically (Drude-Boltzmann theory):
$\rho_{x x}=\frac{m}{e^{2} n_{e} \tau} \quad$ independent of B
$\rho_{y x}=-\frac{B}{n_{e} e c}$

Quantum transport in strong magnetic fields

Integer Quantum Hall Effect
(IQHE)

Fractional Quantum Hall Effect
(FQHE)

Basics of IQHE

2D Electron in transverse magnetic field
\longrightarrow Landau levels $E_{n}=\hbar \omega_{c}(n+1 / 2)$
ω_{c} - cyclotron frequency
$\nu=\Phi_{0} \frac{n}{B}=\frac{N_{e}}{N_{\Phi}}-$ filling factor
$\Phi_{0}=\frac{h c}{e}$ - flux quantum

disorder \longrightarrow Landau levels broadened
Anderson localization \longrightarrow only states in the band center delocalized $\boldsymbol{E}_{\boldsymbol{F}}$ in the range of localized states $\longrightarrow\left\{\begin{array}{c}\text { plateau in } \sigma_{x y} \\ \sigma_{x x}=0\end{array}\right.$

Quantization of $\sigma_{x y}-$?

Hall conductivity quantization

$E_{H}=\frac{1}{2 \pi r} \frac{1}{c} \frac{d \Phi}{d t}$
$\sigma_{x y}=\frac{j}{E_{H}}=\frac{\Delta Q}{\Phi_{0} / c}$
ΔQ - charge transported as $\Phi \longrightarrow \Phi+\Phi_{0}$
Gauge invariance \longrightarrow states are not changed Localized states are not influenced Delocalized state may transform into another delocalized state
$\Longrightarrow k=0,1,2, \ldots$ electrons are transported k - number of filled delocalized bands
$\longrightarrow \Delta Q=k e$

$$
\Longrightarrow \quad \sigma_{x y}=k \frac{e^{2}}{h}
$$

Laughlin'81, Halperin'82

IQH transition

IQHE flow diagram
Khmelnitskii' 83, Pruisken' 84

Field theory (Pruisken):

σ-model with topological term

$$
S=\int d^{2} r\left\{-\frac{\sigma_{x x}}{8} \operatorname{Tr}\left(\partial_{\mu} Q\right)^{2}+\frac{\sigma_{x y}}{8} \operatorname{Tr} \epsilon_{\mu \nu} Q \partial_{\mu} Q \partial_{\nu} Q\right\}
$$

Critical behavior: Modeling and numerics

Models:
a) white-noise disorder projected to the lowest Landau level
b) Chalker-Coddington network (models a long-range disorder)

Chalker, Coddington ' 88

Localization length exponent

$\boldsymbol{\xi} \propto\left|\boldsymbol{E}-\boldsymbol{E}_{\boldsymbol{c}}\right|^{-\nu}$

$$
\nu=2.35 \pm 0.03
$$

Huckestein, Kramer '90, ...

Multifractal wave functions at the Quantum Hall transition

Multifractality at the Quantum Hall critical point

QHE: anomalous dimensions

\longrightarrow spectrum is parabolic with a very high (1\%) accuracy:
$f(\alpha)=2-\frac{\left(\alpha-\alpha_{0}\right)^{2}}{4\left(\alpha_{0}-2\right)}$,

$$
\Delta_{q}=\left(\alpha_{0}-2\right) q(1-q) \quad \text { with } \quad \alpha_{0}-2=0.262 \pm 0.003
$$

Evers, Mildenberger, ADM '01
important for identification of the CFT of the Quantum Hall critical point

Critical exponents: analytical approaches

Numerics summary:
$\nu=2.35 \pm 0.03 \quad(=7 / 3 ?) \quad$ localization length
$\Delta_{q}=\left(\alpha_{0}-2\right) q(1-q) \quad \alpha_{0}-2=0.262 \pm 0.003 \quad$ multifractality
Analytics - ?

- attempts to identify the Conformal Field Theory

Zirnbauer '99 ; Bhaseen, Caux, Kogan, Tsvelik '00 ; Tsvelik '07 models of the Wess-Zumino-Novikov-Witten type term lines of critical points - good to accomodate a "strange" value of $\alpha_{0}-2$ $\nu=? \quad$ Universality - ?

- σ-model with topological term Pruisken et al. 1984 - present extension of a weak-coupling RG calculation (perturbation theory + instantons) beyond the region of its validity (to $\sigma_{x x} \sim 1$)
$\longrightarrow \quad \nu \simeq 2.8, \quad \alpha_{0}-2 \simeq 0.14 \quad$ accuracy uncontrollable

Dynamical scaling: Transition width

Transition width $\quad \delta \sim T^{\kappa}, \omega^{\zeta} \quad \kappa, \zeta-?$

Experiment:
Wei et al PRL'88 ... Li et al PRL'05
measured κ depends on the nature of disorder
For short-range disorder (presumably)

$$
\kappa \simeq 0.42, \quad \nu \simeq 2.3
$$

Frequency scaling: $\zeta \simeq 0.4 \div 0.5 \quad$ Engel et al '93; Hohls et al '02
What about theory?

Dynamical scaling: Theory vs experiment

Transition width $\delta(T) \sim T^{\kappa}$ is found from $\quad L_{\phi}(T) \sim \xi(\delta)$
Dephasing length $L_{\phi} \sim T^{-1 / z_{T}} \longrightarrow \kappa=1 / z_{T} \nu$ analogously, for frequency scaling: $\delta(\omega) \sim \omega^{\zeta}, \quad L_{\omega} \sim \omega^{-1 / z}, \quad \zeta=1 / z \nu$

- short-range interaction: interaction irrelevant in the RG sense, fixed point unchanged $\longrightarrow \nu \simeq 2.35, z=2$ unchanged $\longrightarrow \zeta \simeq 0.21$ $z_{T} \simeq 1.2$ (numerics) $\longrightarrow \kappa \simeq 0.36$
- Coulomb interaction: interaction relevant, fixed point changed, indices not known

Experiment $\longrightarrow z, z_{T} \simeq 1(\longrightarrow$ Coulomb interaction relevant $)$ but $\nu=2.3$ (as for non-interacting system)

More about IQHE and its relatives

- Dirac fermions, graphene:
anomalous IQHE ; relation of conductivity at Dirac point to IQHE
- unconventional (Bogoliubov-de Gennes) symmetry classes:
spin and thermal QHE

Fractional Quantum Hall Effect

Fractional Quantum Hall Effect. Theory

Coulomb interaction \longrightarrow strongly correlated ground state:
incompressible quantum fluid
wave function for $\nu=1 / 3 \quad[\nu=1 /(2 p+1)] \quad$ R.B. Lauglhin, 1983

$$
\Psi=\prod_{j<k}\left(z_{j}-z_{k}\right)^{3} \prod_{j} e^{-\left|z_{j}\right|^{2} / 4 l_{B}^{2}} \quad z=x+i y
$$

Attachment of zeroes ("vortices") to particles
\mathbf{N}_{Φ} flux quanta, N particles
$N / N_{\Phi}=\nu$ filling factor
Lowest Landau level $\longrightarrow N_{\Phi}$ zeroes
$\longrightarrow \frac{N_{\Phi}}{N}=\nu^{-1}=3$ zeroes per particle

Fractional Quantum Hall Effect. Theory (cont'd)

Field-theoretical description: Chern-Simons theory
(Girvin, MacDonald,...)
electron +3 flux quanta \longrightarrow "composite boson" \longrightarrow condensation

Excitations (quasiparticles): charge e/3
localization of quasiparticles \longrightarrow FQH plateaus

Hierarchy of FQHE states

Laughlin states: filling factor $\nu=1 /(2 m+1)$
Experiment: FQHE also at $\nu=2 / 5,3 / 7, \ldots$
Hierarchy theory
Haldane 1983, Laughlin 1984, Halperin 1984
electrons $\left(+m\right.$ flux quanta) \longrightarrow condensation $\nu=\frac{1}{m}$
\longrightarrow quasiparticles \longrightarrow condensation $\nu=\frac{1}{m \pm \frac{1}{p_{1}}}$
\longrightarrow quasiparticles \longrightarrow condensation $\nu=\frac{1}{m \pm \frac{1}{p_{1} \pm \frac{1}{p_{2}}}}$
p_{1} - even
\longrightarrow. . .
problems:

- why do $\nu=\frac{p}{2 p \pm 1}, \frac{p}{4 p \pm 1}$ dominate in experiment?
hierarchy: $1 / 3 \longrightarrow 2 / 5 \longrightarrow 3 / 7 \longrightarrow 4 / 9 \longrightarrow 5 / 11 \longrightarrow 6 / 13 \longrightarrow \ldots$
- properties of the $\nu=1 / 2$ state?

Composite fermions

Jain 1989:
Electron +2 flux quanta \longrightarrow composite fermion (CF)

CF's are subjected to the effective magnetic field

$$
B_{e f f}=B-B_{1 / 2} \quad B_{1 / 2}=2 \Phi_{0} n
$$

- half filling: $\quad \nu=1 / 2 \longrightarrow B=B_{1 / 2} \longrightarrow B_{\text {eff }}=0$
- near $\nu=1 / 2$:

$$
\nu_{e f f} \equiv \frac{\Phi_{0} n}{\left|B_{e f f}\right|} \quad \longrightarrow \quad \nu=\frac{\nu_{e f f}}{2 \nu_{e f f} \pm 1}
$$

$$
\nu_{e f f}=p \quad \longleftrightarrow \quad \nu=\frac{p}{2 p \pm 1}
$$

IQHE of CF's
dominant FQHE-series

Field-theoretical formulation

Chern-Simons (CS) gauge theory
Lopez, Fradkin 1991; Halperin, Lee, Read 1993

$$
\begin{array}{rlr}
L & =L_{0} & \leftarrow \text { free particle in } \mathrm{B}_{\mathrm{eff}} \\
& +\int d^{2} r\left[a_{0} \psi^{*} \psi+\frac{-i}{2 m}\left(\psi^{*} \partial_{i} \psi-\partial_{i} \psi^{*} \cdot \psi-i a_{i} \psi^{*} \psi\right) a_{i}\right] \\
& -\frac{1}{4 \pi} \int d^{2} r a_{0} \epsilon^{i j} \partial_{i} a_{j} & \leftarrow \text { Chern }- \text { Simons term } \\
& -\frac{1}{2} \int d^{2} r d^{2} r^{\prime} \psi^{*}(\mathrm{r}) \psi(\mathrm{r}) V_{\text {Coul }}\left(\mathrm{r}-\mathrm{r}^{\prime}\right) \psi^{*}\left(\mathrm{r}^{\prime}\right) \psi\left(\mathrm{r}^{\prime}\right)
\end{array}
$$

CF's - quasiparticles describing lower-energy physics of a strongly correlated electron system near $\nu=1 / 2$
differ from electrons in many respects:

- effective mass - set by e-e interaction, $m_{*} \sim 10 \div 15 m_{e}$ (GaAs)
- effective magnetic field $\boldsymbol{B}_{\text {eff }}$
- effective disorder: random magnetic field
- gauge-field interaction

Effect of disorder

donors n_{i}

2DEG n_{e}

Typical experimental parameters:
$n_{e} \sim n_{i} \sim(1 \div 2) \cdot 10^{11} \mathrm{~cm}^{-2}$
$d \sim 100 \mathrm{~nm} \quad \rightarrow \quad k_{F} d \sim 15 \gg 1 \quad$ weak smooth disorder

Bare potential of impurity $\quad V(q)=\frac{2 \pi e^{2}}{\varepsilon q} e^{-q d}$
\rightarrow screening by CF's interacting via Coulomb and Chern-Simons \rightarrow

- screened potential $V(q)=\frac{2 \pi}{m^{*}} e^{-q d}$
- effective magnetic field $\quad b(q)=4 \pi e^{-q d}$
$k_{F} d \gg 1 \rightarrow \begin{aligned} & \text { random magnetic field constitutes the dominant mechanism } \\ & \text { of scattering }\end{aligned}$

$$
\langle h(q) h(-q)\rangle=(4 \pi)^{2} n_{i} e^{-2 q d}
$$

How to "observe" composite fermions?

$\boldsymbol{B}_{\mathrm{eff}} \rightarrow$ effective cyclotron radius $\boldsymbol{R}_{c}^{\mathrm{eff}}=\frac{\hbar c \sqrt{4 \pi n_{e}}}{e \boldsymbol{B}_{\mathrm{eff}}}$
$B_{\mathrm{eff}} \ll B \quad \longrightarrow \quad R_{c}^{\mathrm{eff}} \gg R_{c}$
Geometric resonances:

antidot arrays

magnetic focussing

lateral superlattice or surface acoustic wave

Experiments: Willett, Störmer, Smet, Goldman

Composite fermions: Experimental confirmations

modulated structure

surface acoustic wave

Composite fermions: Cyclotron resonance

Kukushkin, Smet, von Klitzing, Wegscheider, Nature '02

CF effective mass set by Coulomb interaction:
$k_{F}^{2} / m_{*} \sim e^{2} / r \longrightarrow m_{*} \propto n^{1 / 2}$

Composite fermions: Gauge field interaction

Chern-Simons interaction + RPA
\longrightarrow transverse gauge-field fluctuations singular at low $\boldsymbol{q}, \boldsymbol{\omega}$
$D_{\perp}(\omega, q)=\frac{1}{\chi q^{2}-i\left(k_{F} / 2 \pi\right) \omega / q} \quad \chi=1 / 8 \pi m^{*}$
\longrightarrow enhanced (compared to Fermi liquid) inelastic scattering rate
Manifestations:

- quantum correction to resistivity due to interplay of interaction and disorder
- dephasing rate
- Coulomb drag in double-layer systems

Coulomb drag

Response of the "passive" layer (2) to a current in the "active" layer (1) mediated by the Coulomb Interaction.

transresistivity (drag resistivity):

$$
\rho_{\alpha \beta}^{D}=-E_{2 \alpha} / j_{1 \beta} \simeq \rho_{\alpha \gamma}^{(1)} \sigma_{\gamma \delta}^{D} \rho_{\delta \beta}^{(2)}
$$

transconductivity:
more convenient for diagrammatics

$$
\sigma_{\alpha \beta}^{D}=-j_{2 \alpha} / E_{1 \beta}
$$

$\rho_{x x}^{D}=\frac{\hbar^{2}}{e^{2} n_{1} n_{2}} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \frac{1}{2 T \sinh ^{2}(\omega / 2 T)} \int \frac{d^{2} q}{(2 \pi)^{2}} q_{x}^{2}|U(\omega, \mathrm{q})|^{2} \operatorname{Im} \Pi_{1}(\omega, \mathrm{q}) \operatorname{Im} \Pi_{2}(\omega, \mathrm{q})$
Zheng, MacDonald '93; Jauho, Smith '93; Kamenev, Oreg '95; Flensberg et al. '95
$U(\omega, q)$ - interaction, $\quad \Pi_{i}(\omega, q)$ - density-density response function

Composite fermions: Coulomb drag

Electrons in low B (Fermi liquid): characteristic $\omega \sim T, \quad q \sim d^{-1}$
$\longrightarrow \rho^{D} \propto T^{2} \quad$ Fermi-liquid inelastic scattering rate
CF's at $\nu=1 / 2: \quad$ singular interaction $D_{\perp}(\omega, q)=\frac{1}{\chi q^{2}-i\left(k_{F} / 2 \pi\right) \omega / q}$
$\longrightarrow \quad q \sim T^{1 / 3} \longrightarrow \quad \rho^{D} \propto T^{4 / 3}$
Kim, Millis '97 ; Sakhi '97 ; Ussishkin, Stern '97

Strongly coupled bilayers

Quantized Hall state in a strongly coupled bilayer

Spontaneous interlayer phase coherence:

$$
\Psi\left(z_{1}, z_{2}, \ldots\right)=\prod_{i<j}\left(z_{i}-z_{j}\right) \prod_{j} e^{-\left|z_{j}\right|^{2} / 4 l_{B}^{2}} \prod_{k} \frac{1}{\sqrt{2}}\left(|\uparrow\rangle+e^{i \phi}|\downarrow\rangle\right)
$$

From two composite-fermion states to excitonic condensate
Coulomb drag - indicator of spontaneous phase coherence

Quantum phase transition $1 / 2+1 / 2 \longrightarrow 1$ with decreasing layer separation

$$
\nu=5 / 2 \quad \& \quad 7 / 2
$$

First observation: Willett et al '87

FQHE states
with even denominator?!

Composite fermions: Pairing

Transverse ("magnetic") gauge-field interaction $\longrightarrow \quad$ attraction of CF's with opposite velocities \longrightarrow possibility of superconducting pairing! state fully spin polarized $\longrightarrow p$-wave pairing

Moore, Read '91 ; Read, Green '00

$$
\Psi\left(z_{1}, z_{2}, \ldots\right)=\operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{2} \prod_{j} e^{-\left|z_{j}\right|^{2} / 4 l_{B}^{2}}
$$

$$
\operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right)=\frac{1}{2^{N / 2}(N / 2)!} \mathcal{A}\left\{\frac{1}{z_{1}-z_{2}} \frac{1}{z_{3}-z_{4}} \frac{1}{z_{N-1}-z_{N}}\right\}
$$

Pfaffian
(square root of determinant) \mathcal{A} - antisymmetrization
BCS-type superconducting state with pairing function $1 / z$
Excitations: non-abelian statistics

High Landau levels: Electronic liquid crystals
$N=0(\nu=1 / 2,3 / 2)-$ composite fermions
$N=1(\nu=5 / 2,7 / 2)-$ paired composite fermions
$N \geq 2(\nu=9 / 2, \ldots)-$?

Strong transport anisotropy indicates formation of a striped phase
First experiment: Lilly et al (Eisenstein group, Caltech) '99
Theory: Koulakov, Fogler, Shklovskii '96; Chalker, Moessner '96 striped phase in high Landau levels favored by exchange interaction

Composite fermions: Second generation

Pan, Stormer, Tsui, Pfeiffer, Baldwin, West '03

$$
\nu^{-1}=2+\nu_{\mathrm{cf}}^{-1}
$$

$\nu_{\text {cf }}=1+1 / 2=3 / 2 \longrightarrow \nu=3 / 8 \quad$ zero effective field
$\nu_{\mathrm{cf}}=1+p /(2 p \pm 1)=\quad \longrightarrow \quad \nu=\frac{3 p \pm 1}{8 p \pm 3}$
IQHE of 2nd generation CF's

