

Low-dimensional disordered electronic systems

(theoretical aspects)

Part II

Alexander D. Mirlin

Research Center Karslruhe & University Karlsruhe & PNPI St. Petersburg

 $http://www-tkm.physik.uni-karlsruhe.de/{\sim}mirlin/$

Evers, ADM "Anderson transitions", arXiv:0707.4378

Electron-electron interaction effects: renormalization and dephasing

Renormalization

Virtual processes, energy transfer $\gtrsim T$ become stronger when T is lowered; in low d singular in the limit $T \rightarrow 0$ Altshuler, Aronov '79 (review: '85); Zala, Narozhny, Aleiner, Phys. Rev. B 64, 214204 (2001); see also Gornyi, ADM, Phys. Rev. B 69, 045313 (2004)

Cf.: Fermi-liquid renormalizations, Kondo, Luttinger-liquid power laws, Fermi-edge singularity ...

• Dephasing

Real inelastic scattering processes, energy transfer $\lesssim T$ become weaker when T is lowered, vanishing as $T \to 0$

Altshuler, Aronov, Khmelnitskii '82; see also Aleiner, Altshuler, Gershenson, Waves Random Media 9, 201 (1999)

Interaction correction to conductivity: Exchange

Interaction correction to conductivity: Hartree

+

e

g

h

Interaction correction to conductivity: Diffusive regime

diffusive regime: $T\tau \ll 1$

typical diagram (exchange):

$$\Delta\sigma(\Omega) \simeq rac{2}{\Omega} rac{e^2}{2\pi} \int (dp) v_x^2 [G_\epsilon^R(p)]^2 [G_\epsilon^A(p)]^2 \int (dq) \int_0^\Omega rac{d\epsilon}{2\pi} \int_\epsilon^\infty rac{d\omega}{2\pi} rac{iU(q,\omega)}{(Dq^2 - i\omega)^2 au^2}$$

$$\int (dp) v_x^2 [G^R G^A]^2 = 4\pi au^2
u D ~~ \longrightarrow ~~ \Delta \sigma(\Omega) = rac{\sigma_0}{\pi^2 \Omega} \int_0^\Omega d\epsilon \int (dq) \int_\epsilon^\infty d\omega rac{i U(q,\omega)}{(Dq^2 - i\omega)^2}$$

short-range interaction $~U(q,\omega)~
ightarrow U(0)$

$$\longrightarrow \Delta \sigma(\Omega) ~\sim~ \sigma_0 U(0) \int_{l_\Omega^{-1}}^{l^{-1}} rac{(dq)}{Dq^2} ~\sim~ e^2
u U(0) imes \left\{ egin{array}{c} \ln \Omega au ~, & d=2 \ \left(rac{\Omega}{D}
ight)^{d/2-1}, & d
eq 2 \end{array}
ight.$$

Interaction correction to conductivity (cont'd)

For $T \gg \Omega$: $\Omega \longrightarrow T$

Coulomb interaction, all exchange diagrams:

Exchange + Hartree: overall factor $1 + 3 \left[1 - \frac{\ln(1 + F_0^{\sigma})}{F_0^{\sigma}} \right]$

Ballistic regime $T au \gg 1, \quad 2 ext{D}: \quad \ln T au \; \longrightarrow \; (E_F - T) au$

In the ballistic regime, prefactor of the Hartree term depends not only on F_0^{σ} , but also on all F_m^{ρ} , F_m^{σ} with $m \neq 0$ and on disorder range

Interaction correction to tunneling DOS

$$rac{\Delta
u(\epsilon)}{
u_0} = -rac{1}{\pi} {
m Im} \int (dq) \int_{\epsilon}^{\infty} d\omega \left[U(q,\omega) - 2 \overline{U(p'-p'',0)}
ight] rac{1}{(Dq^2-i\omega)^2}$$

For short-range interaction

$$rac{\Delta
u(\epsilon)}{
u_0} = -rac{1}{\pi} \left[U(q=0) - 2 \overline{U(p'-p'')}
ight] \int (dq) rac{Dq^2}{(Dq^2)^2 + \epsilon^2} \sim rac{\Delta \sigma(\Omega)|_{\Omega \sim \epsilon}}{\sigma_0}$$

However, for Coulomb interaction the TDOS correction is parametrically larger!

Interaction correction to TDOS: Coulomb interaction

Dynamically screened Coulomb interaction, 2D:

$$U(q,\omega) = rac{2\pi e^2}{q+\kappa rac{Dq^2}{Dq^2-i\omega}} \ , \qquad \kappa = 4\pi e^2
u \longrightarrow ext{ poor screening for } Dq^2 \ll \omega$$

Exchange correction to TDOS:

$$egin{aligned} &rac{\Delta
u(\epsilon)}{
u_0} = -rac{1}{2\pi^2} \mathrm{Im} \int q \; dq \int_{\epsilon}^{\infty} d\omega rac{2\pi e^2}{q(Dq\kappa - i\omega)(Dq^2 - i\omega)} \ & ext{In the range} \quad Dq^2 \ll \omega \ll Dq\kappa \; ext{ the integral is of } \log^2 ext{ type:} \; \int rac{dq \; d\omega}{D\kappa q\omega} \ & ext{} rac{\Delta
u(\epsilon)}{
u_0} = -rac{1}{8\pi^2
u D} \left[\ln^2 rac{D\kappa^2}{\epsilon} - \ln^2 D\kappa^2 au
ight] \end{aligned}$$

This does not happen for $\Delta \sigma$! Reason: gauge invariance

There is a range of parameters where $\Delta \sigma$ is still small, whereas $\Delta \nu$ is not!

$$rac{
u(\epsilon)}{
u_0} = \exp\left\{-rac{1}{8\pi^2
u D}\left[\ln^2rac{D\kappa^2}{\epsilon} - \ln^2 D\kappa^2 au
ight]
ight\}$$
 Finkelstein '83

Anderson transitions: Renormalization by e-e interaction

Renormalization Group: Finkelstein'83 σ -model with interaction

Anderson transitions: depending on the symmetry class and the character (short- vs. long-range) of the interaction, different situations:

- interaction **RG-irrelevant**; fixed points and critical indices unchanged Example: broken spin-rotation invariance + short-range interaction
- interaction **RG-relevant**; new fixed point and critical indices; phase diagram qualitatively unchanged

Example: broken spin-rotation invariance + 1/r Coulomb interaction

• interaction not only **RG-relevant** but also leads to some instabilities and new phases

Example: preserved spin-rotation invariance + short/long-range interaction

Reviews: Finkelstein '90 ; Belitz, Kirkpatrick '94

MIT in a 2D gas with strong interaction

Kravchenko et al '94, ...

Punnoose, Finkelstein, Science '05 (number of valleys $N \gg 1$; in practice, N = 2 sufficient)

Dephasing by e-e interaction

 $\begin{array}{ll} \text{inelastic e-e scattering processes} & \longrightarrow & \text{electron decays}, & \tau_{\phi}^{-1} \propto T^p \\ \text{interacting electrons} & \longrightarrow & \text{Nyquist noise} \end{array}$

$${
m FDT:} \hspace{0.5cm} \langle arphi arphi
angle_{q,\omega} = -{
m Im} U(q,\omega) \coth rac{\omega}{2T}$$

Noise can be considered as classical only for $\omega \ll T$

$$U(q,\omega) = rac{1}{U_0^{-1}(q) + \Pi(q,\omega)} \simeq \Pi^{-1}(q,\omega) = rac{Dq^2 - i\omega}{
u Dq^2} \longrightarrow -\mathrm{Im}U \simeq rac{\omega}{
u Dq^2}$$

$$au_{\phi}^{-1} \simeq \int_{?}^{l_T^{-1}} (dq) rac{T}{
u D q^2}$$
 Equivalently: $au_{\phi}^{-1} \sim rac{1}{
u D^{d/2}} T \int_{?}^{T} d\omega \; \omega^{d/2-2}$

2D, quasi-1D : IR (low-q) divergence! weak localization: self-consistent cutoff: $q_{\min} = l_{\phi}^{-1}$, $\omega_{\min} = \tau_{\phi}^{-1}$

$$au_{\phi}^{-1} \sim \left(rac{T}{
u D^{1/2}}
ight)^{2/3}, \ \ ext{quasi-1D} \qquad au_{\phi}^{-1} \sim rac{T}{g} \ln g \ , \ \ ext{2D}$$
Altshuler, Aronov, Khmelnitskii '82

Dephasing by e-e interaction (cont'd)

• IR divergence: cutoff depends on geometry of the phenomenon. Aharonov-Bohm oscillations: harmonics decay as $\exp\{-2\pi nR/l_{\phi}^{AB}\}$ trajectories should encircle the ring! \longrightarrow cutoff: $q_{\min} \sim R^{-1}$

$$1/ au_{\phi}^{
m AB}\sim rac{TR}{
u D}\,, \qquad \qquad l_{\phi}^{
m AB}=\left(D au_{\phi}^{
m AB}
ight)^{1/2}\sim rac{
u^{1/2}D}{T^{1/2}R^{1/2}}$$

Ludwig, ADM '04

2D electron gas in strong magnetic fields

Standard realization: GaAs/AlGaAs heterostructures

Disorder: charged donors

Typical experimental parameters:

$$n_e, \; n_i \sim (1 \div 3) \cdot 10^{11} \, {
m cm}^{-2}, \quad d \sim 100 \; {
m nm}$$

- $\longrightarrow ~k_F d \sim 10 \gg 1$
- \longrightarrow weak smooth disorder
- \longrightarrow high mobility

Magnetotransport

$$ho_{xx}=E_x/j_x$$

 $ho_{yx}=E_y/j_x$ Hall resistivity

classically (Drude–Boltzmann theory):

$$ho_{xx} = rac{m}{e^2 n_e au} \quad ext{independent of } B$$
 $ho_{yx} = -rac{B}{n_e ec}$

Quantum transport in strong magnetic fields

Integer Quantum Hall Effect (IQHE)

Fractional Quantum Hall Effect (FQHE)

Basics of IQHE

 $E_F ext{ in the range of localized states } \longrightarrow egin{cases} ext{plateau in } \sigma_{xy} \ \sigma_{xx} = 0 \end{bmatrix}$

Quantization of σ_{xy} – ?

Hall conductivity quantization

Laughlin'81, Halperin'82

$$E_{H}=rac{1}{2\pi r}rac{1}{c}rac{d\Phi}{dt} \ \sigma_{xy}=rac{j}{E_{H}}=rac{\Delta Q}{\Phi_{0}/c}$$

 ΔQ - charge transported as $\Phi \longrightarrow \Phi + \Phi_0$ Gauge invariance \longrightarrow states are not changed

Localized states are not influenced

Delocalized state may transform into another delocalized state

 $\implies k = 0, 1, 2, \dots$ electrons are transported

 \boldsymbol{k} - number of filled delocalized bands

$$\longrightarrow \ \Delta Q = k e$$

$$\implies \sigma_{xy} = k \frac{e^2}{h}$$

IQH transition

 $\sigma\text{-model}$ with topological term

$$S=\int d^2r\left\{-rac{\sigma_{xx}}{8}{
m Tr}(\partial_\mu Q)^2+rac{\sigma_{xy}}{8}{
m Tr}\epsilon_{\mu
u}Q\partial_\mu Q\partial_
u Q
ight\}$$

Critical behavior: Modeling and numerics

Models:

- a) white-noise disorder projected to the lowest Landau level
- b) Chalker-Coddington network (models a long-range disorder)

Chalker, Coddington '88

Huckestein, Kramer '90, ...

Multifractal wave functions at the Quantum Hall transition

Multifractality at the Quantum Hall critical point

 \rightarrow spectrum is parabolic with a very high (1%) accuracy:

$$f(lpha)=2\!-\!rac{(lpha-lpha_0)^2}{4(lpha_0-2)}, \qquad \Delta_q=(lpha_0\!-\!2)q(1\!-\!q) \ \ ext{with} \ \ lpha_0\!-\!2=0.262\!\pm\!0.003$$

Evers, Mildenberger, ADM '01

important for identification of the CFT of the Quantum Hall critical point

Critical exponents: analytical approaches

Numerics summary:

 $u=2.35\pm0.03 \qquad (=7/3~?) \qquad ext{localization length}$ $\Delta_q=(lpha_0-2)q(1-q) \qquad lpha_0-2=0.262\pm0.003 \qquad ext{multifractality}$ Analytics - ?

• attempts to identify the Conformal Field Theory

Zirnbauer '99 ; Bhaseen, Caux, Kogan, Tsvelik '00 ; Tsvelik '07 models of the Wess-Zumino-Novikov-Witten type term lines of critical points – good to accomodate a "strange" value of $\alpha_0 - 2$ $\nu =$? Universality - ?

• σ -model with topological term Pruisken et al. 1984 - present

extension of a weak-coupling RG calculation (perturbation theory + instantons) beyond the region of its validity (to $\sigma_{xx} \sim 1$)

 $\longrightarrow \nu \simeq 2.8, \qquad \alpha_0 - 2 \simeq 0.14 \qquad ext{accuracy uncontrollable}$

Dynamical scaling: Transition width

 ${
m Transition \ width} \quad \delta \sim T^\kappa \ , \ \ \omega^\zeta \qquad \kappa, \ \zeta - ?$

Experiment:

Wei et al PRL'88 ... Li et al PRL'05

measured κ depends on the nature of disorder

For short-range disorder (presumably) $\kappa \simeq 0.42$, $\nu \simeq 2.3$ Frequency scaling: $\zeta \simeq 0.4 \div 0.5$ Engel et al '93; Hohls et al '02 What about theory?

Dynamical scaling: Theory vs experiment

- short-range interaction: interaction irrelevant in the RG sense, fixed point unchanged $\longrightarrow \nu \simeq 2.35$, z = 2 unchanged $\longrightarrow \zeta \simeq 0.21$ $z_T \simeq 1.2$ (numerics) $\longrightarrow \kappa \simeq 0.36$
- Coulomb interaction: interaction relevant, fixed point changed, indices not known

 $egin{array}{cccc} {f Experiment} & \longrightarrow & z, \ z_T \simeq 1 & (\longrightarrow & {f Coulomb} & {f interaction} & {f relevant}) \ & {f but} &
u = 2.3 & ({f as} & {f for} & {f non-interacting} & {f system}) \end{array}$

 \longrightarrow persistent puzzle

More about IQHE and its relatives

• Dirac fermions, graphene:

anomalous $\ensuremath{\mathbf{IQHE}}$; relation of conductivity at Dirac point to $\ensuremath{\mathbf{IQHE}}$

• unconventional (Bogoliubov-de Gennes) symmetry classes: spin and thermal QHE

 \rightarrow coming soon

Fractional Quantum Hall Effect

Fractional Quantum Hall Effect. Theory

Coulomb interaction \longrightarrow strongly correlated ground state:

incompressible quantum fluid

wave function for $\nu = 1/3$ $[\nu = 1/(2p+1)]$ R.B. Laughhin, 1983

$$\Psi = \prod_{j < k} (z_j - z_k)^3 \prod_j e^{-|z_j|^2/4l_B^2} \qquad \qquad z = x + iy$$

Attachment of zeroes ("vortices") to particles

 N_{Φ} flux quanta, N particles $N/N_{\Phi} = \nu$ filling factor

Lowest Landau level $\longrightarrow N_{\Phi}$ zeroes

$$\longrightarrow \ {N_{\Phi}\over N} =
u^{-1} = 3 \;\; {
m zeroes \; per \; particle}$$

Fractional Quantum Hall Effect. Theory (cont'd)

Field-theoretical description: Chern-Simons theory

(Girvin, MacDonald,...)

electron + 3 flux quanta \longrightarrow "composite boson" \longrightarrow condensation

Excitations (quasiparticles): charge e/3localization of quasiparticles \longrightarrow FQH plateaus

Hierarchy of FQHE states

Laughlin states: filling factor $\nu = 1/(2m+1)$ Experiment: FQHE also at $\nu = 2/5, 3/7, ...$

problems:

• why do $\nu = \frac{p}{2p \pm 1}$, $\frac{p}{4p \pm 1}$ dominate in experiment? hierarchy: $1/3 \longrightarrow 2/5 \longrightarrow 3/7 \longrightarrow 4/9 \longrightarrow 5/11 \longrightarrow 6/13 \longrightarrow \dots$

• properties of the $\nu = 1/2$ state?

Composite fermions

Jain 1989:

Electron + 2 flux quanta \longrightarrow composite fermion (CF)

CF's are subjected to the effective magnetic field

IQHE of CF's

dominant FQHE-series

Field-theoretical formulation

Chern-Simons (CS) gauge theory

Lopez, Fradkin 1991; Halperin, Lee, Read 1993

$$egin{aligned} L &= L_0 & & \leftarrow ext{free particle in } ext{B}_{ ext{eff}} \ &+ \int d^2 r \left[a_0 \psi^* \psi + rac{-i}{2m} (\psi^* \partial_i \psi - \partial_i \psi^* \cdot \psi - i a_i \psi^* \psi) a_i
ight] \ &- rac{1}{4\pi} \int d^2 r a_0 \epsilon^{ij} \partial_i a_j & \leftarrow ext{Chern} - ext{Simons term} \ &- rac{1}{2} \int d^2 r d^2 r' \psi^*(\mathbf{r}) \psi(\mathbf{r}) V_{ ext{Coul}}(\mathbf{r} - \mathbf{r}') \psi^*(\mathbf{r}') \psi(\mathbf{r}') \end{aligned}$$

CF's – quasiparticles describing lower-energy physics of a strongly correlated electron system near $\nu=1/2$

differ from electrons in many respects:

- effective mass set by e-e interaction, $m_* \sim 10 \div 15 m_e$ (GaAs)
- effective magnetic field $B_{
 m eff}$
- effective disorder: random magnetic field
- gauge-field interaction

Effect of disorder

Typical experimental parameters: $n_e \sim ~n_i \sim (1 \div 2) \cdot 10^{11} \, {
m cm}^{-2}$ $d \sim 100 \text{ nm} \rightarrow k_F d \sim 15 \gg 1$ weak smooth disorder

Bare potential of impurity $V(q) = \frac{2\pi e^2}{\epsilon q} e^{-qd}$

- \rightarrow screening by CF's interacting via Coulomb and Chern-Simons \rightarrow
- screened potential $V(q) = \frac{2\pi}{m^*}e^{-qd}$
- effective magnetic field $b(q) = 4\pi e^{-qd}$

 $k_F d \gg 1 \rightarrow random ext{magnetic field constitutes the dominant mechanism} of scattering$

$$\langle h(q)h(-q)
angle = (4\pi)^2 n_i e^{-2qd}$$

How to "observe" composite fermions?

$$B_{
m eff} ~
ightarrow ~
m effective~
m cyclotron~radius~ R_c^{
m eff} = rac{\hbar c \sqrt{4\pi n_e}}{e B_{
m eff}}$$

 $B_{
m eff} \ll B ~~ \longrightarrow ~~ R_c^{
m eff} \gg R_c$

Geometric resonances:

antidot arrays

magnetic focussing

lateral superlattice or surface acoustic wave

Experiments: Willett, Störmer, Smet, Goldman

Composite fermions: Experimental confirmations

modulated structure

surface acoustic wave

Composite fermions: Cyclotron resonance

Kukushkin, Smet, von Klitzing, Wegscheider, Nature '02

CF effective mass set by Coulomb interaction:

$$k_F^2/m_*\sim e^2/r~\longrightarrow~m_*\propto n^{1/2}$$

Composite fermions: Gauge field interaction

Chern-Simons interaction + RPA

 \longrightarrow transverse gauge-field fluctuations singular at low q,ω

$$D_\perp(\omega,q) = rac{1}{\chi q^2 - i(k_F/2\pi) \ \omega/q} \qquad \qquad \chi = 1/8\pi m^*$$

 \rightarrow enhanced (compared to Fermi liquid) inelastic scattering rate

Manifestations:

- quantum correction to resistivity due to interplay of interaction and disorder
- dephasing rate
- Coulomb drag in double-layer systems

Coulomb drag

Response of the "passive" layer (2) to a current in the "active" layer (1) mediated by the Coulomb Interaction.

transresistivity (drag resistivity):

$$ho^D_{lphaeta}=-E_{2lpha}/j_{1eta}\simeq
ho^{(1)}_{lpha\gamma}\sigma^D_{\gamma\delta}
ho^{(2)}_{\deltaeta}$$

d=20-100nm transconductivity:

more convenient for diagrammatics

$$\sigma^D_{lphaeta}=-j_{2lpha}/E_{1eta}$$

$$ho_{xx}^D = rac{\hbar^2}{e^2 n_1 n_2} \int_{-\infty}^{\infty} rac{d\omega}{2\pi} rac{1}{2T \sinh^2(\omega/2T)} \int rac{d^2 q}{(2\pi)^2} q_x^2 \left| oldsymbol{U}(\omega,\mathbf{q})
ight|^2 \mathrm{Im} \Pi_1(\omega,\mathbf{q}) \mathrm{Im} \Pi_2(\omega,\mathbf{q})$$

Zheng, MacDonald '93; Jauho, Smith '93; Kamenev, Oreg '95; Flensberg *et al.* '95 $U(\omega, q)$ – interaction, $\Pi_i(\omega, q)$ – density-density response function

Composite fermions: Coulomb drag

Electrons in low *B* (Fermi liquid): characteristic $\omega \sim T$, $q \sim d^{-1}$ $\longrightarrow \rho^D \propto T^2$ Fermi-liquid inelastic scattering rate CF's at $\nu = 1/2$: singular interaction $D_{\perp}(\omega, q) = \frac{1}{\chi q^2 - i(k_F/2\pi) \omega/q}$ $\longrightarrow q \sim T^{1/3} \longrightarrow \rho^D \propto T^{4/3}$

Kim, Millis '97 ; Sakhi '97 ; Ussishkin, Stern '97

Muraki et al '04

Strongly coupled bilayers

Quantized Hall state in a strongly coupled bilayer

Spontaneous interlayer phase coherence:

$$\Psi(z_1,z_2,\ldots) = \prod_{i < j} (z_i-z_j) \prod_j e^{-|z_j|^2/4l_B^2} \prod_k rac{1}{\sqrt{2}} (|\uparrow
angle + e^{i\phi}|\downarrow
angle)$$

From two composite-fermion states to excitonic condensate

Coulomb drag – indicator of spontaneous phase coherence

Quantum phase transition $1/2+1/2 \longrightarrow 1$ with decreasing layer separation

$u = 5/2 \ \& \ 7/2$

Willett et al '87

FQHE states with even denominator?!

Composite fermions: Pairing

Transverse ("magnetic") gauge-field interaction

- \longrightarrow attraction of CF's with opposite velocities
- \longrightarrow possibility of superconducting pairing!

state fully spin polarized \longrightarrow *p*-wave pairing

Moore, Read '91 ; Read, Green '00

$$\Psi(z_1, z_2, \ldots) = \mathrm{Pf}\left(rac{1}{z_i - z_j}
ight) \prod_{i < j} (z_i - z_j)^2 \prod_j e^{-|z_j|^2/4l_B^2}$$

$$ext{Pf}\left(rac{1}{z_i-z_j}
ight) = rac{1}{2^{N/2}(N/2)!} \, \mathcal{A}\left\{rac{1}{z_1-z_2} \, rac{1}{z_3-z_4} \, rac{1}{z_{N-1}-z_N}
ight\}$$

Pfaffian

(square root of determinant) \mathcal{A} – antisymmetrization BCS-type superconducting state with pairing function 1/zExcitations: non-abelian statistics

High Landau levels: Electronic liquid crystals

 $N=0 \ (
u=1/2,\ 3/2) - {
m composite \ fermions}$ $N=1 \ (
u=5/2,\ 7/2) - {
m paired \ composite \ fermions}$ $N\geq 2 \ (
u=9/2,\ldots) - ?$

Strong transport anisotropy indicates formation of a striped phase First experiment: Lilly et al (Eisenstein group, Caltech) '99 Theory: Koulakov, Fogler, Shklovskii '96; Chalker, Moessner '96 striped phase in high Landau levels favored by exchange interaction

Composite fermions: Second generation

Pan, Stormer, Tsui, Pfeiffer, Baldwin, West '03

 $u^{-1} = 2 +
u_{
m cf}^{-1}$

 $egin{aligned}
u_{
m cf} &= 1 + 1/2 = 3/2 &\longrightarrow
u &= 3/8 & ext{zero effective field} \
u_{
m cf} &= 1 + p/(2p \pm 1) = &\longrightarrow
u &= rac{3p \pm 1}{8p \pm 3} & ext{IQHE of 2nd generation CF's} \end{aligned}$