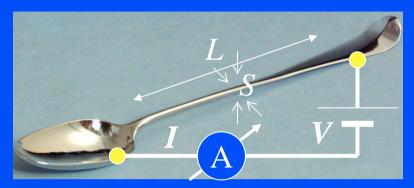
Electrons in Quantum Wires

L.I. Glazman Yale University

Outline

- Electrical resistance Sharvin resistance and Landauer formula
- Interaction effects: scattering of electron waves off a Friedel oscillation
- Dynamics of electron fluid in 1D, intro to bosonization
- Multi-mode wires, spin-charge separation
- Effects of non-linear dispersion $[\epsilon = p^2/2m]$

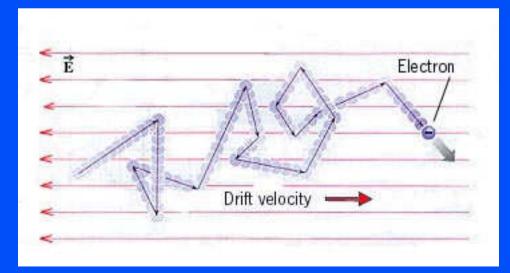
Resistance, Conductance, Conductivity



Ohm's law: V=IR

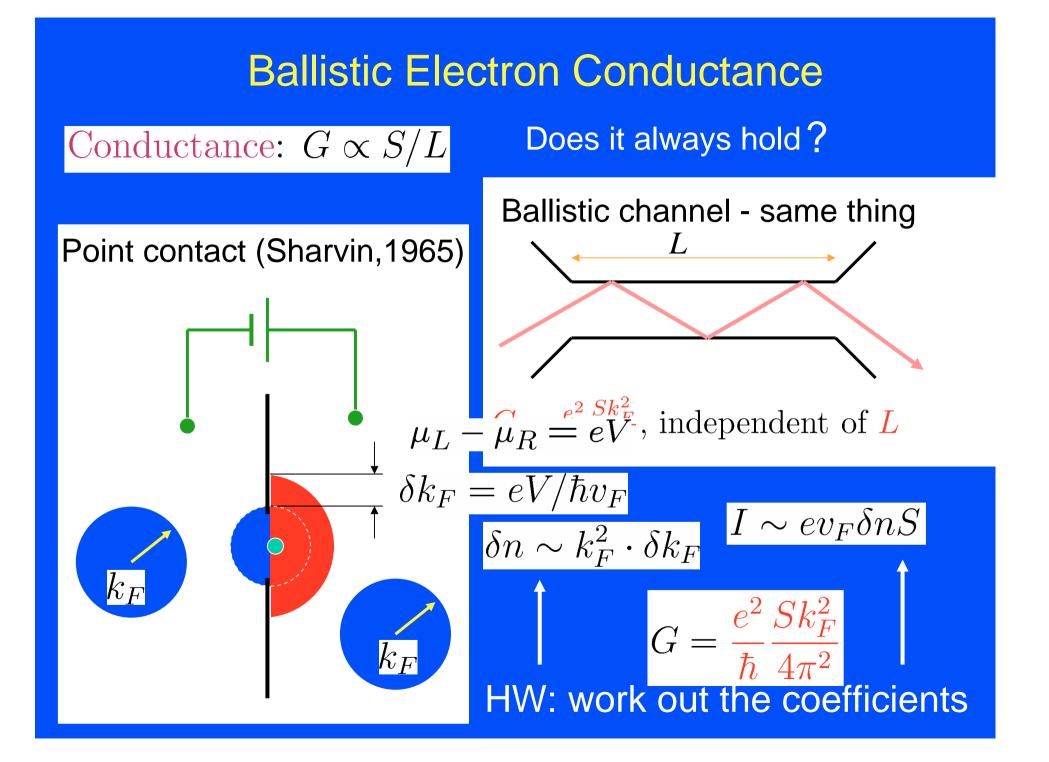
Conductance:
$$G = 1/R = \sigma \cdot S/L$$

Metals–high conductivity [Cu:
$$\sigma \sim 10^8 \, (\Omega \cdot m)^{-1}$$
]



Drude conductivity:

$$\sigma = rac{n_e e^2 \ell}{m_e v_F}$$

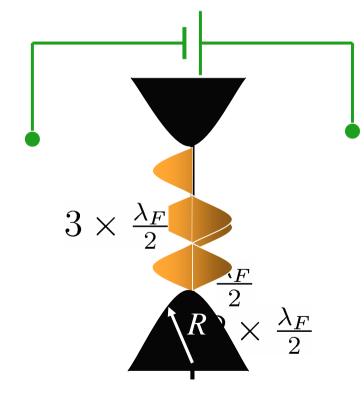


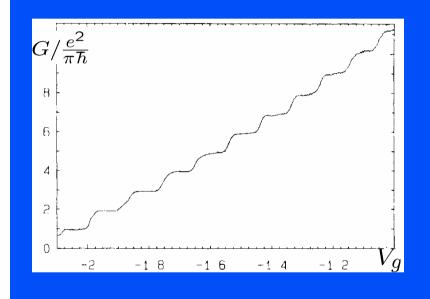
Quantum Ballistic Electron Conductance

Conductance: $G \propto S$

Does it always hold?

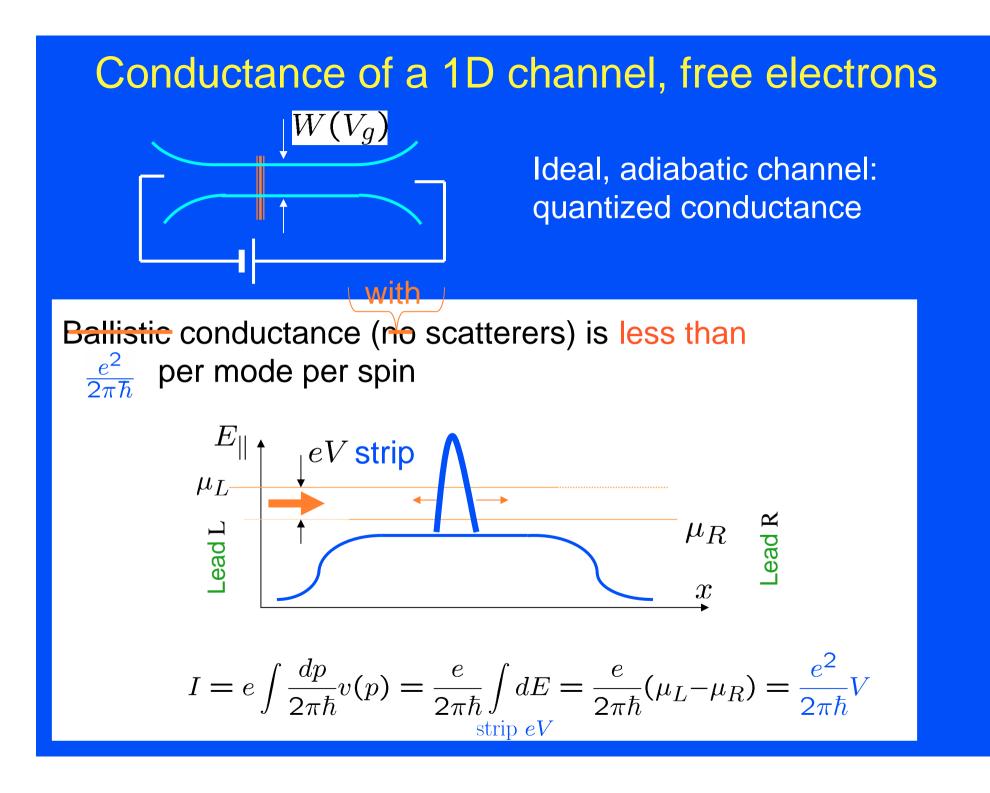
Quantum point contact (van Wees et al; 1988 M. Pepper et al; 1988)



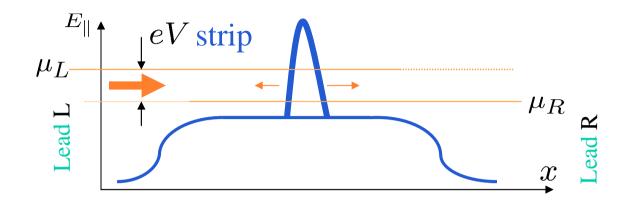


 $R \gtrsim \lambda_F$ is crucial for the conductance quantization

$$G = \frac{e^2}{\pi\hbar} \frac{Wk_F}{\pi} \longrightarrow G = \frac{e^2}{\pi\hbar} N$$



Conductance of a 1D channel, free electrons



$$I = \frac{e}{2\pi\hbar} \int T_0(E) dE$$

strip eV

 $T_0(E)$ - transmission coefficient of the barrier

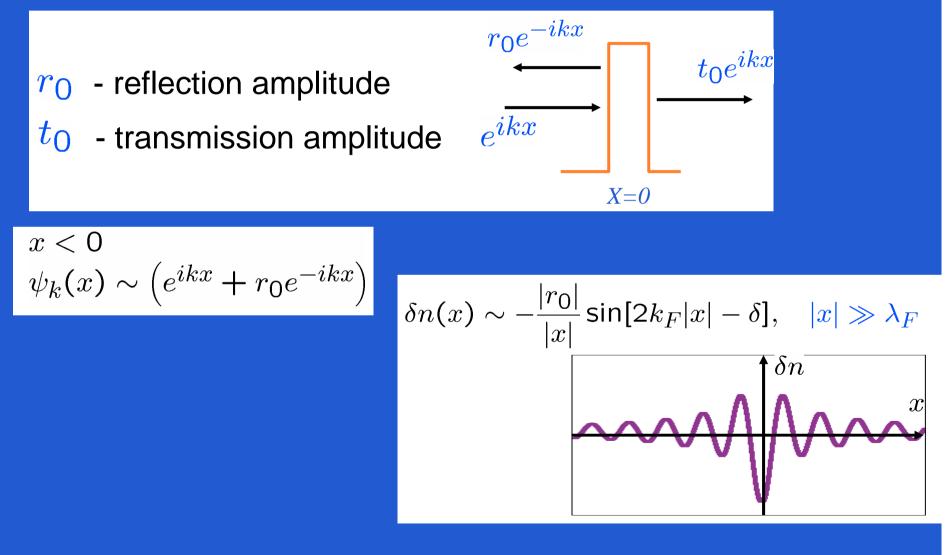
Current = sum of partial currents at different energy "slices"

For each "slice" [E, E+dE], the partial current depends on T_0 at the same energy E only.

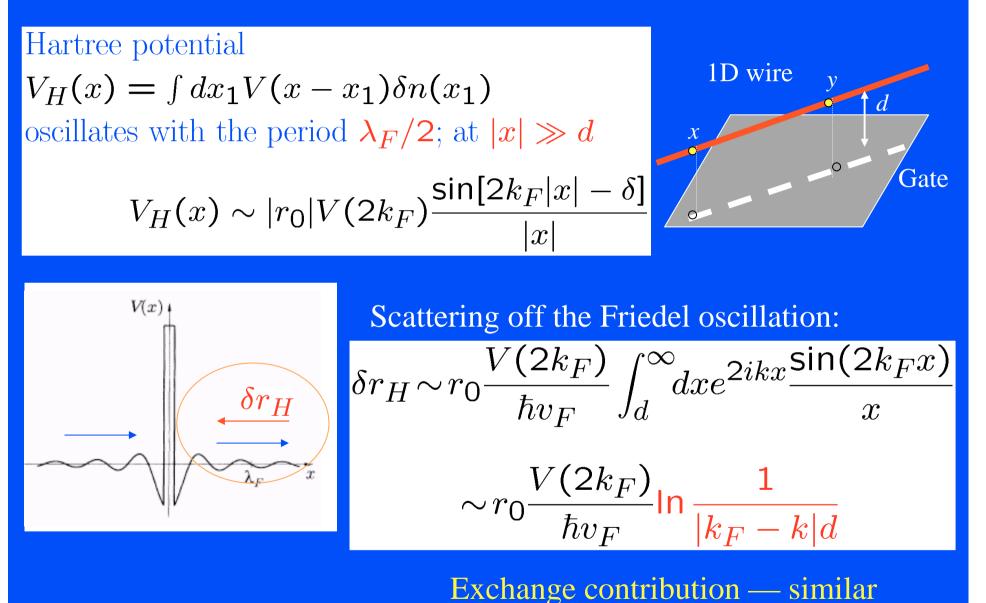
> The linear conductance $G = \frac{e^2}{2\pi\hbar} T_0(E_F)$ (Landauer formula).

Friedel oscillation (Friedel, 1952)

Reflection at the barrier changes all electron states, including those with energy $E < E_{F}$.



Friedel oscillation: Hartree potential

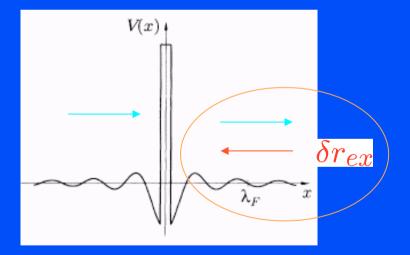


Friedel oscillation: Exchange contribution

Exchange potential

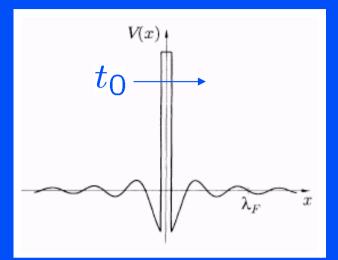
$$V_{ex}(x,y) = V(x-y) \int_0^{2k_F} \frac{dk}{2\pi} \psi_k^*(x) \psi_k(y)$$
$$V(x-y)$$

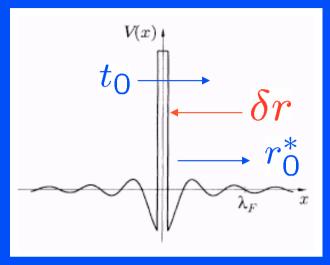
$$\sim \frac{v(x-y)}{x+y} r_0 \exp[-ik_F(x+y)]$$

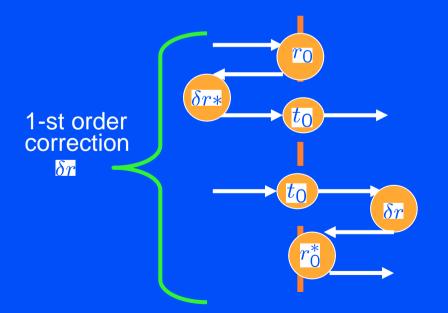


$$\delta r_{ex} \sim r_0 rac{V(k=0)}{4\pi\hbar v_F} \lnrac{1}{|k_F - k|d}$$

Transmission modified by the Friedel oscillation



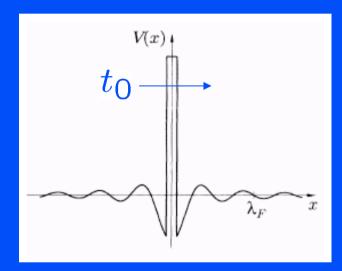


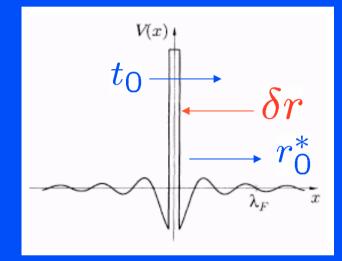


Transmission modified by the Friedel oscillation

Transmission coefficient of a "composite" barrier:

$$T = T_0 + 2T_0 \operatorname{Re}(r_0^* \delta r)$$





correction to T_0 : Hartree

exchange

$$\delta T = T_0 (1 - T_0) \frac{V(2k_F) - V(0)}{\pi \hbar v_F} \ln \frac{1}{|k_F - k|d}$$

First-order interaction correction to the transmission coefficient

Transmission coefficient becomes energy-dependent :

$$\delta T(\varepsilon) = -2\alpha T_0(1 - T_0) \ln \left| \frac{D_0}{\varepsilon} \right|$$

$$\varepsilon = \hbar v_F(k - k_F)$$

$$D_0 = \hbar v_F/d$$

$$\alpha = \frac{1}{2\pi \hbar v_F} [V(0) - V(2k_F)]$$
suppression enhancement
of the transmission
$$D \text{ wire } y = d$$

$$\alpha \approx \frac{e^2}{\hbar v_F} \ln(k_F d)$$

$$at k_F d \gg 1$$

$$\kappa_F d \gg 1$$

Cure: the leading—logarithm approximation

$$\delta r \sim r_0 \alpha \int_d^\infty \frac{dx}{x} \sin(2k_F x) e^{2ikx}$$

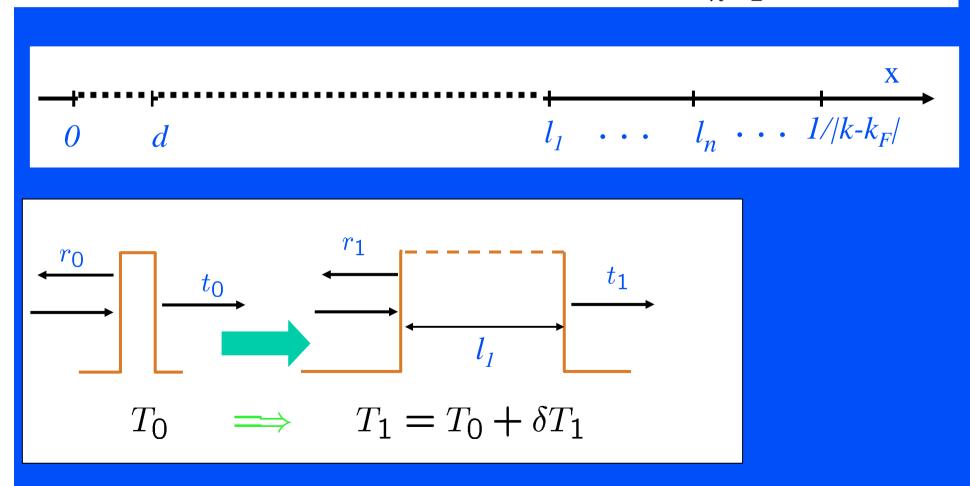
$$= r_0 \alpha \int_d^{\frac{1}{|k-k_F|}} \frac{dx}{x} \sin(2k_F x) e^{2ikx} + r_0 \alpha \int_{\frac{1}{|k-k_F|}}^\infty \frac{dx}{x} \sin(2k_F x) e^{2ikx}$$

$$\propto \alpha \ln \frac{1}{|k-k_F|d} = \alpha \ln \frac{D_0}{\varepsilon}$$

Leading—log: sums up the most divergent terms, $\left[\alpha \ln \left|\frac{D_0}{\varepsilon}\right|\right]^n$, of the perturbation theory

Real-space RG

Split the important interval $[d, 1/|k - k_F|]$ on smaller pieces, so that $l_n - l_{n-1} \gg d$, but $\alpha \int_{l_{n-1}}^{l_n} dx/x \ll 1$



Transmission in the leading-log approximation

$$T_n - T_{n-1} = -2\alpha T_{n-1} (1 - T_{n-1}) \ln \frac{l_n}{l_{n-1}}$$
$$1 \le n \le D_0 / |\varepsilon|$$

$$T(\varepsilon) = \frac{T_0 \left| \frac{\varepsilon}{D_0} \right|^{2\alpha}}{R_0 + T_0 \left| \frac{\varepsilon}{D_0} \right|^{2\alpha}}$$

$$R_0 \equiv 1 - T_0$$
The leading-log result does not diverge
$$T_0 = \frac{T(\varepsilon)}{T_0 + T(\varepsilon)}$$

$$T(\varepsilon) = \frac{\varepsilon^* \sim \left(\frac{R_0}{T_0}\right)^{\frac{1}{2\alpha}} D_0}{\varepsilon^* \sim \left(\frac{R_0}{T_0}\right)^{\frac{1}{2\alpha}} D_0}$$

Conductance in the leading-log. approximation

scattering remains elastic --> Landauer formula works

$$G(\mathbf{k}_{B}T) = \frac{e^{2}}{2\pi\hbar} \int d\varepsilon \left(-\frac{df_{F}}{d\varepsilon}\right) T(\varepsilon)$$

Within log-accuracy:

$$G(k_B T) = \frac{e^2}{2\pi\hbar} \frac{T_0 \left|\frac{k_B T}{D_0}\right|^{2\alpha}}{R_0 + T_0 \left|\frac{k_B T}{D_0}\right|^{2\alpha}}$$

x

At low energies

$$k_B T, eV \ll \varepsilon^* \sim \left(\frac{R_0}{T_0}\right)^{\frac{1}{2\alpha}} D_0$$

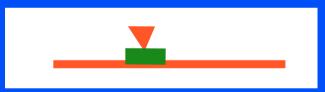
$$\frac{dI}{dV} = V^{2\alpha} F\left(\frac{k_B T}{eV}\right)$$

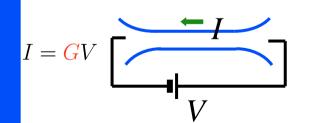
scaling
$$F(x)$$
 $x^{2\alpha}$

Effects of interaction – Friedel oscillation picture 1. Tunneling across a barrier is modified, $\frac{dI}{dV}\Big|_{T=0} \propto (eV)^{2\alpha}$

2. No barrier ⇒ no Friedel oscillation; properties of an ideal 1D channel are not modified ?

Tunneling into the "bulk": $\frac{dI}{dV}\Big|_{\text{bulk}} \propto \text{const}$





Two-terminal conductance remains quantized e^2

1D electron fluid: phenomenology

Dynamical variable: displacement of a unit 1D volume u(x,t)Lagrangian:

$$\delta L = \delta K - \delta U = \frac{1}{2} n_0 m \left(\frac{\partial u}{\partial t}\right)^2 - \left(\frac{1}{2} \frac{\partial \mu}{\partial n} n_0^2 \right) \left(\frac{\partial u}{\partial x}\right)^2$$

Kin. energy Potential energy

External field: $\delta U_{\text{ext}} = e n_0 E(x, t) u$

Wave equation:
$$\frac{\partial^2 u}{\partial t^2} - \frac{v^2}{\partial x^2} \frac{\partial^2 u}{\partial x^2} = -\frac{e}{m} E(x,t)$$

Conductivity & charge waves

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} = -\frac{e}{m} E(x, t)$$

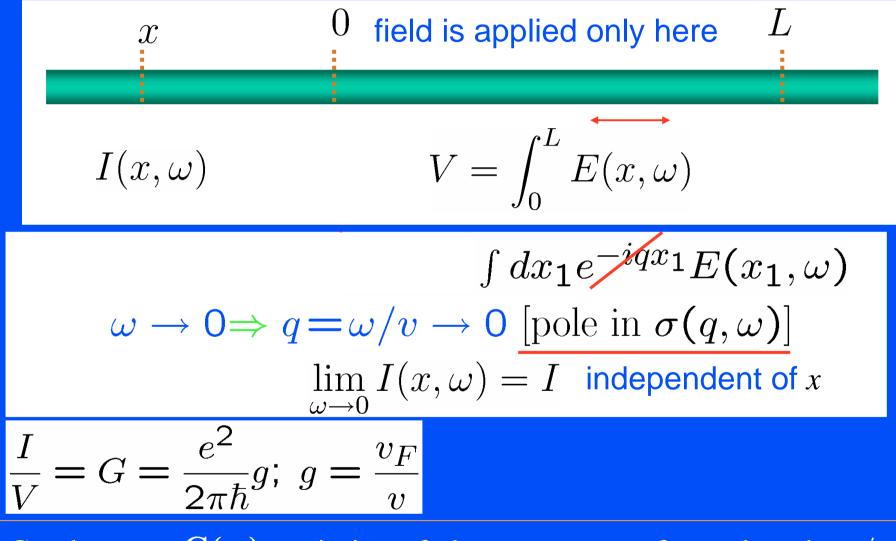
$$v = \left[v_F^2 + \frac{2}{\pi} V(0) v_F \right]^{\frac{1}{2}} > v_F$$
Velocity of 1D Fermi gas + Coulomb
plasmon wave rigidity + repulsion
$$\text{Current:} I(x, t) = en_0 \frac{\partial u(x, t)}{\partial t}$$

$$\sigma(q, \omega) = \frac{e^2 v_F}{\pi \hbar} \frac{-i\omega}{(qv)^2 - \omega^2 - i0 \cdot \omega}$$

Quantum wires - continuation

From conductivity to the conductance

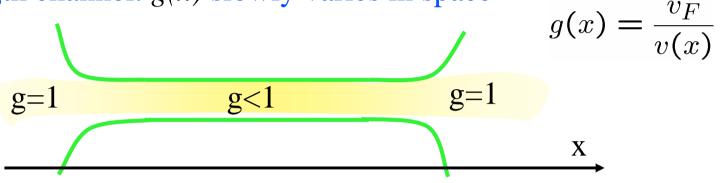
Ideal (homogeneous) wire



Conductance $G(\omega)$ =emission of plasmon waves of wavelength ~ v/ω .

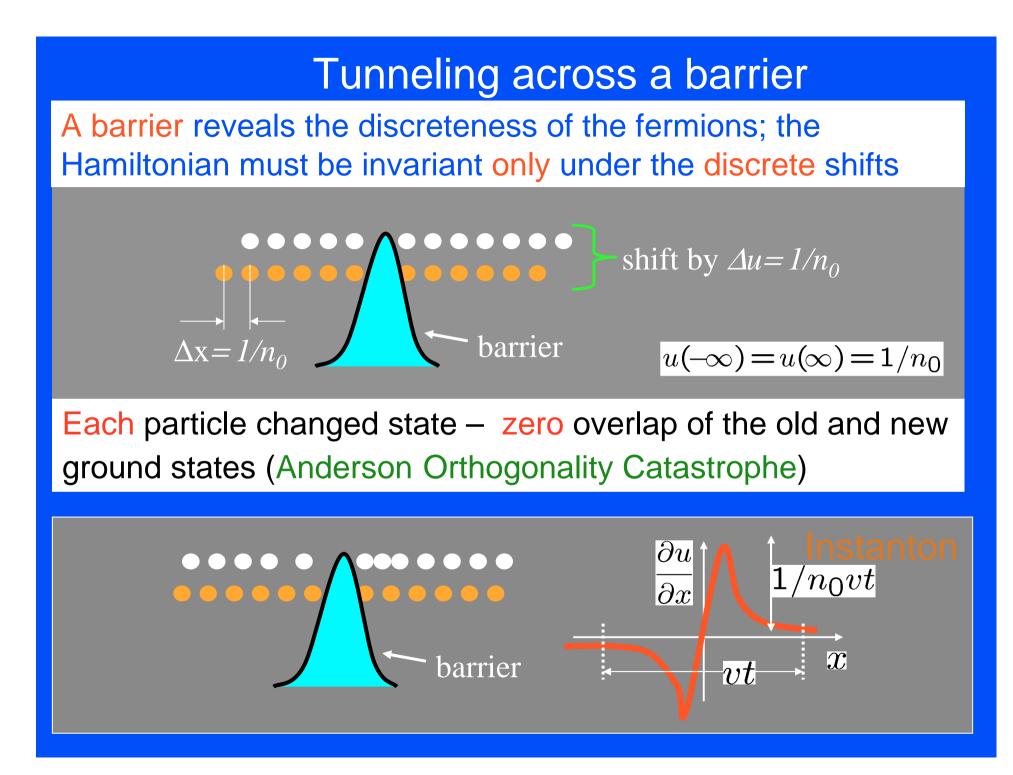
Conductance of a finite channel

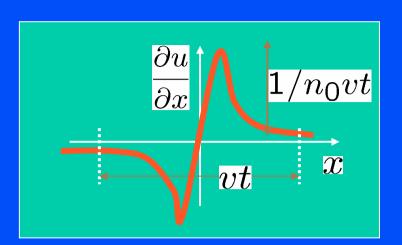
Dissipative conductance=emission of plasmons of wavelength $\sim v/\omega$. Finite-length channel: g(x) slowly varies in space



$$G(\omega) = rac{e^2}{2\pi\hbar}g(x \sim v/\omega)$$

Outside the channel: $g(x \to \pm \infty) \to 1 \Rightarrow G_{dc} = \frac{e^2}{2\pi\hbar}$ regardless the interaction strength within the channel





Tunneling amplitude

Instanton action (WKB tunneling):

$$S(t) \sim \int_{t_0}^t d\tau E(\tau) \sim i \frac{1}{g} \ln \frac{|t|}{t_0}$$

Tunneling amplitude:

$$A(\varepsilon) \propto \int dt e^{-i\varepsilon t} \exp\left[iS(t)
ight] \propto |\varepsilon|^{rac{1}{g}-1}$$

Tunneling rate:

$$T(\varepsilon) \propto |\varepsilon|^{2(\frac{1}{g}-1)} g = v_F/v$$

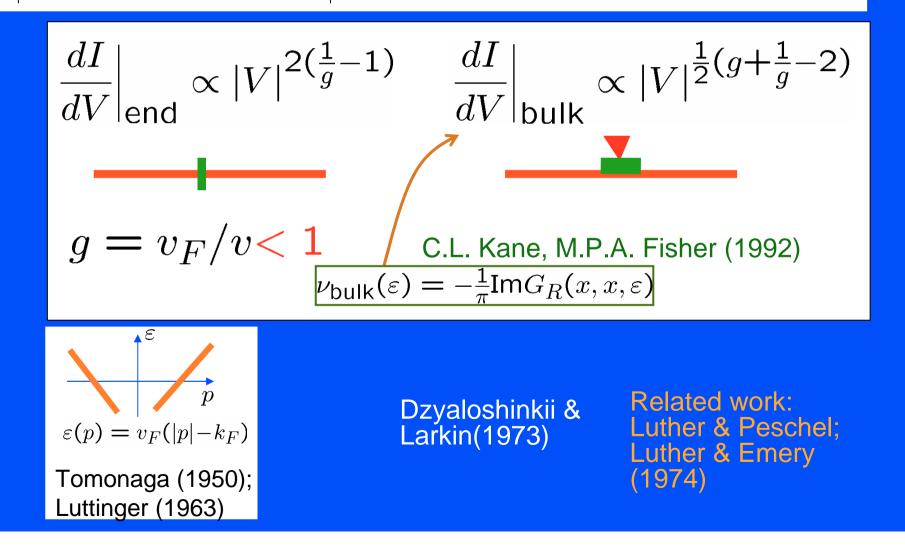
Weak interaction:

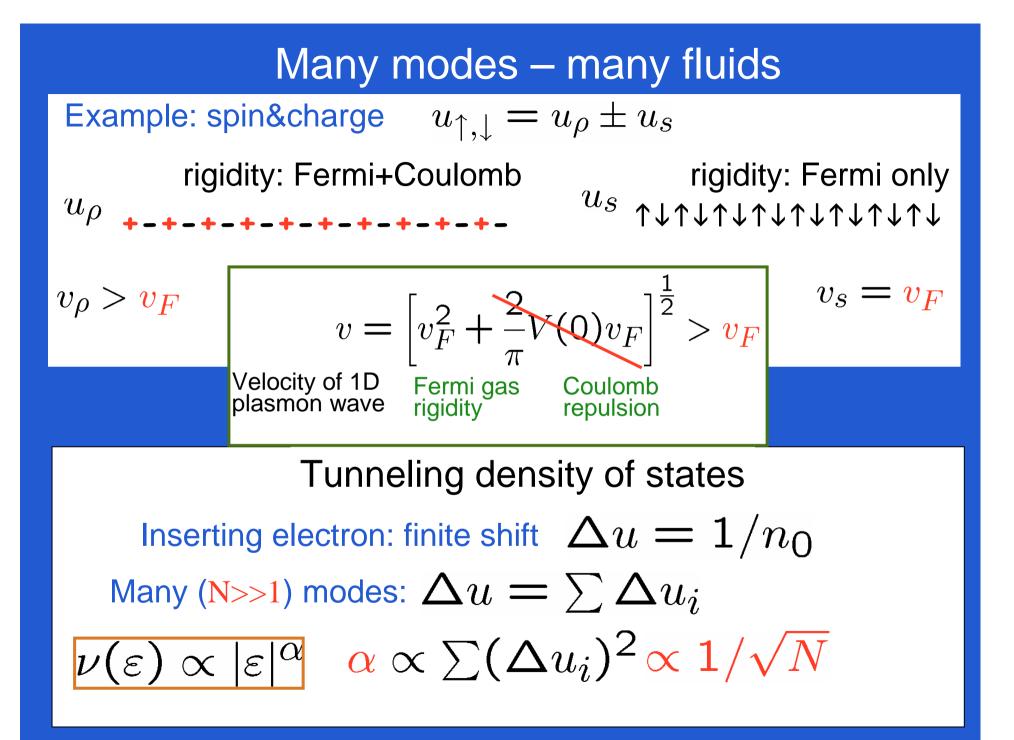
$$\frac{1}{g} - 1 \rightarrow \alpha$$
 fits

fits perturbation theory

Tunneling density of states

New particle \Rightarrow a finite shift of the liquid $-u(-\infty) = u(\infty) = 1/2n_0$





Spectral Function

$$A(arepsilon,p)=-rac{1}{\pi} ext{Im}G_R(p,arepsilon)$$

$$\varepsilon, p$$

П

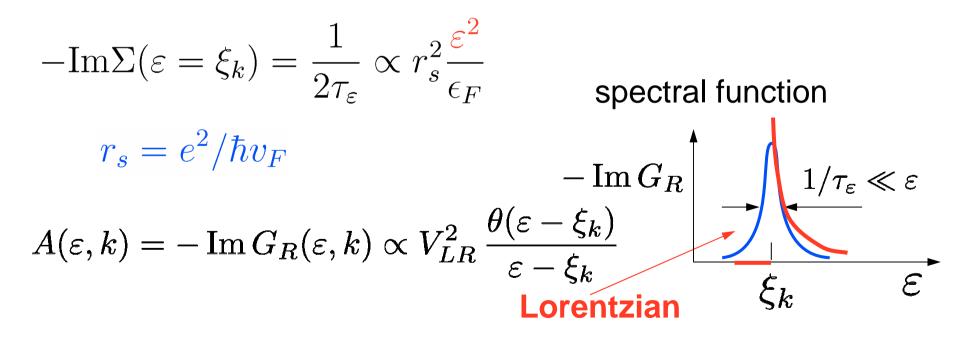
$$G_R(\varepsilon, k) = \frac{1}{\varepsilon - \xi(k) - \Sigma(\varepsilon, k)} = \frac{1}{\varepsilon - \tilde{\xi}_k - i/2\tau_{\varepsilon}}$$

Free electrons: $1/2\tau_{\varepsilon} = 0$ $A(\varepsilon, p) \propto \delta(\varepsilon - \xi(p))$

Interacting fermions: 1D vs. 3D

$$G_R(\varepsilon, k) = \frac{1}{\varepsilon - \xi(k) - \Sigma(\varepsilon, k)} = \frac{1}{\varepsilon - \tilde{\xi}_k - i/2\tau_{\varepsilon}}$$

3D Fermi liquid:



Construction of the Fermion creation operator

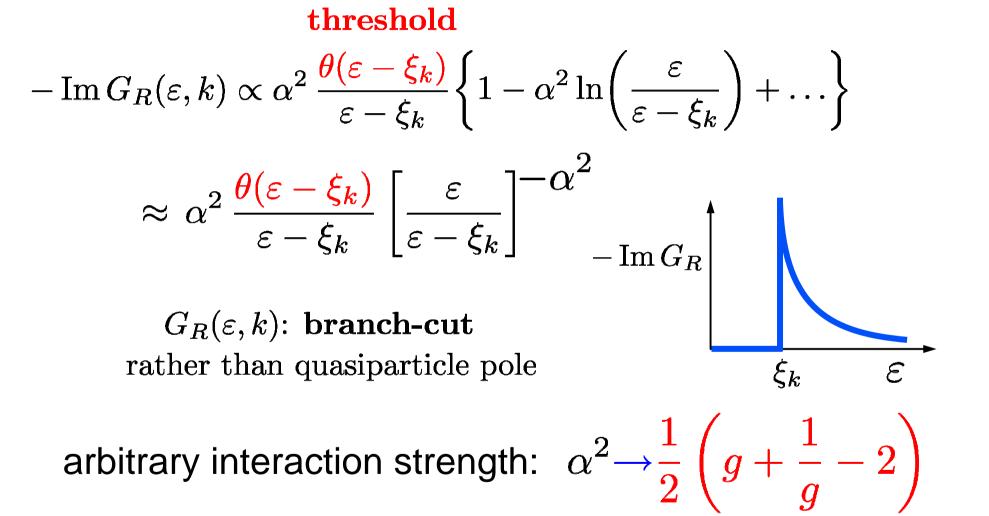
$$\hat{\varphi} = n_0 \hat{u}$$

$$[\theta(x), \nabla \varphi(y)] = \pi \delta(x - y)$$

$$\psi^{\dagger}(x) \propto e^{i\theta(x)}$$

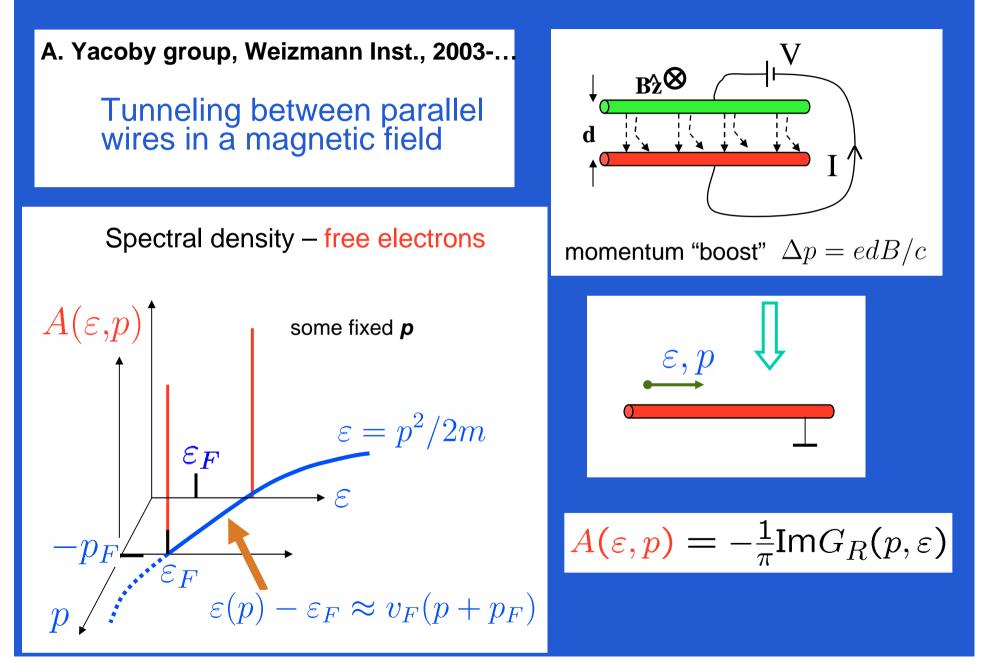
$\bullet \bullet \bullet$

Spectral Function in a Luttinger Liquid



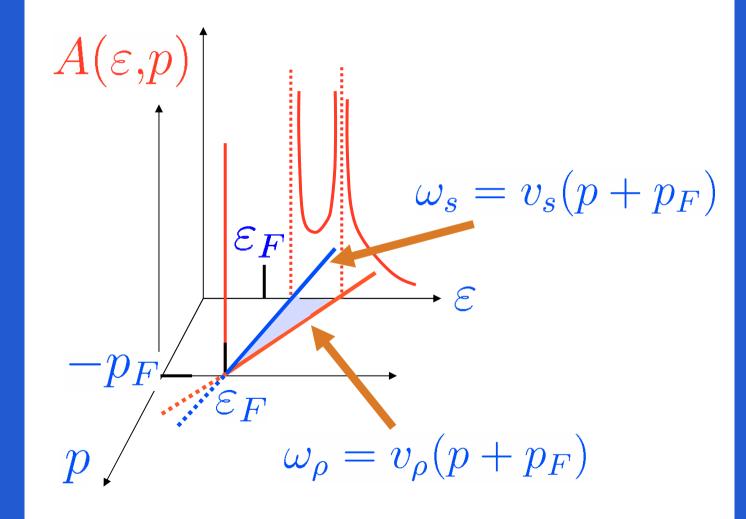
- **exact** for **linear** spectrum $\xi_k = \pm vk$

Spectral function: Experiment

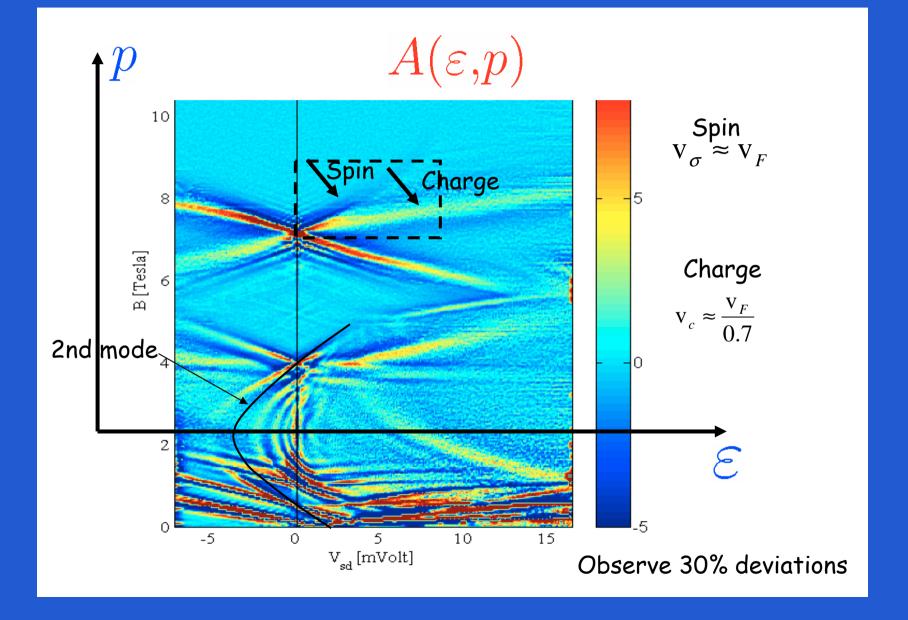


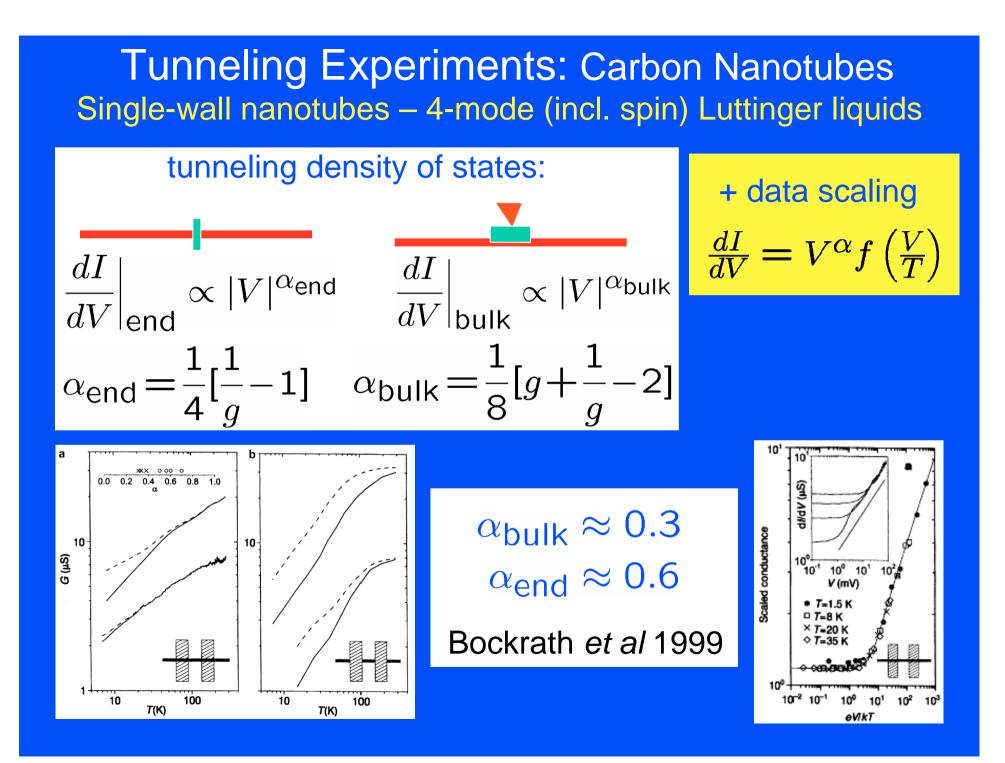
Experiment: Charge-Spin Separation

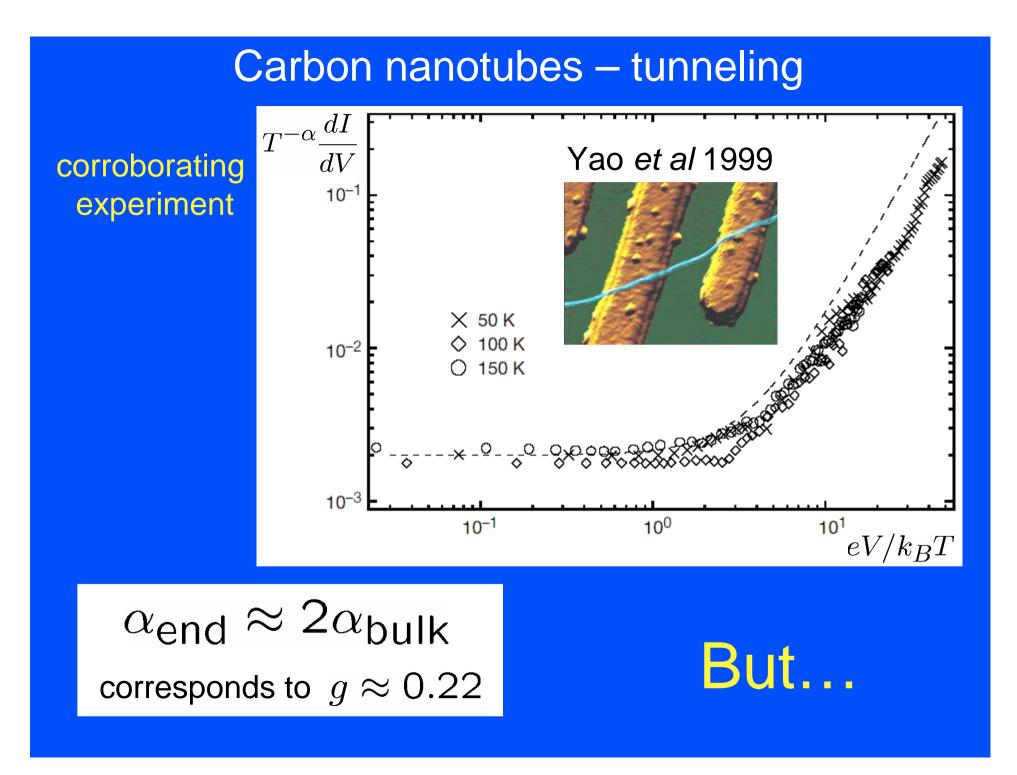
Spectral density: spin and charge modes



Experiment: Charge-Spin Separation







Carbon nanotubes – tunneling

In a multi-wall nanotube dI/dV is also a power-law...

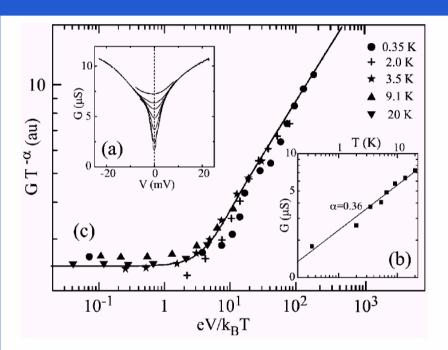


FIG. 2. (a) G(V, T = const) = dI/dV of a second MWNT for T = 0.35, ..., 20 K. (b) The linear conductance G(0, T)in a double logarithmic plot demonstrating power-law scaling. (c) $G(V, T)T^{-\alpha}$ versus eV/k_BT . Similar to the T dependence, $G \propto V^{\alpha}$ for $eV \gg k_BT$ with power $\alpha = 0.36$.

[Bachtold et al (2001)]

...instead of a different function (incl. disorder):

$$\nu(\epsilon, T) \propto \exp\left\{-\sqrt{\frac{\epsilon^*}{T}}F\left(\frac{\epsilon}{\sqrt{\epsilon^*T}}\right)\right\}$$

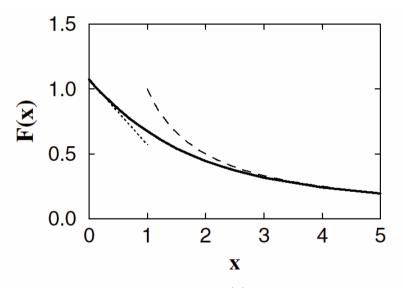
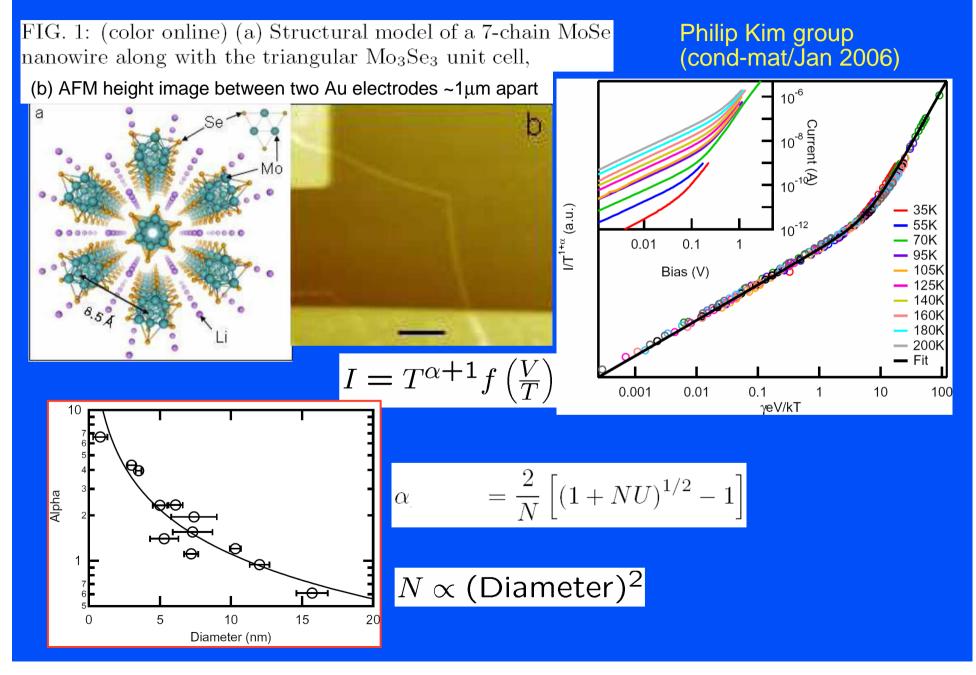
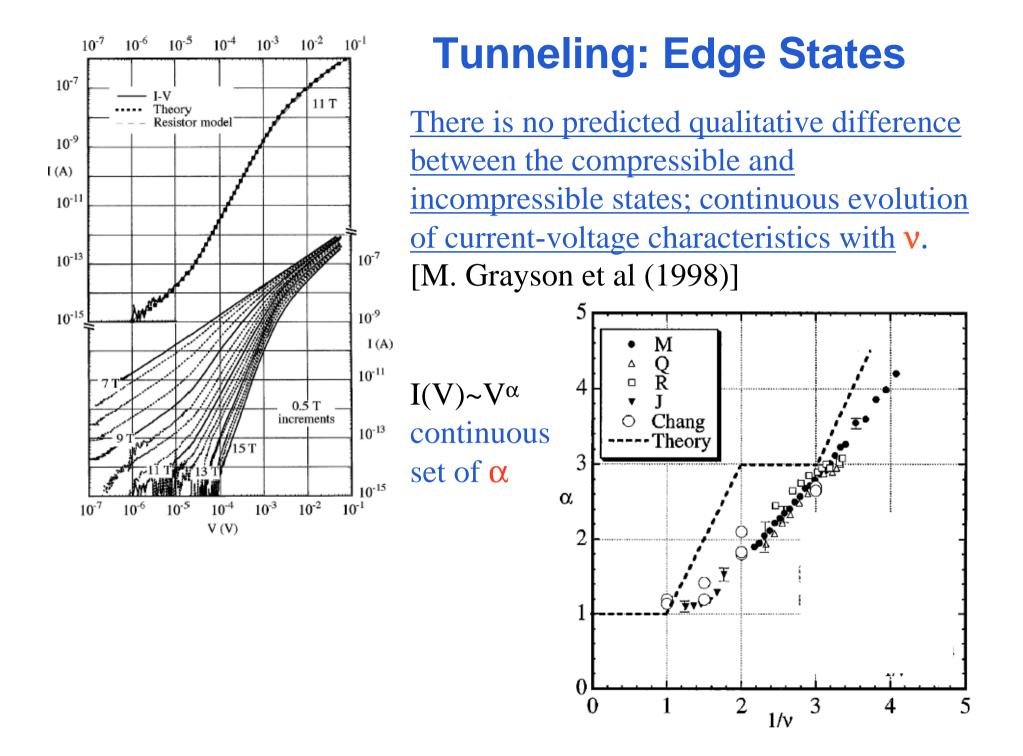


FIG. 1. The scaling function F(x) and its asymptotics: F(x) = 1.07 - x/2 for $x \ll 1$ (dotted line), and $F(x) \sim 1/x$ for $x \gg 1$ (dashed line).

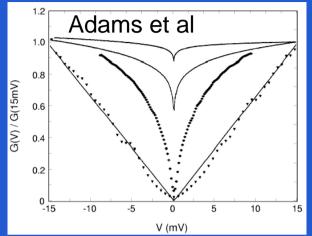
Variable number of modes: MoSe Nanowires





Similar ideas in other dimensions

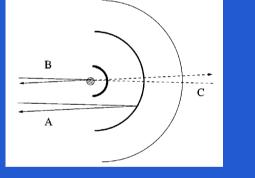
Scattering off a Friedel oscillation in D=2



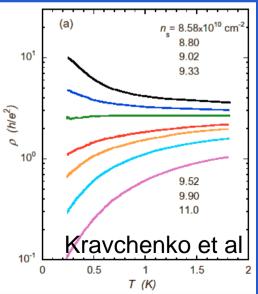
Interaction anomaly in tunneling into a diffusive conductor (Altshuler, Aronov, Lee 1980s)

$$eV au/\hbar\ll$$
 1

Back to 1D systems



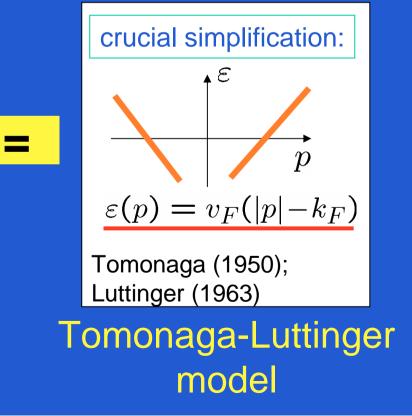
Anomalies in quasi-ballistic conductors



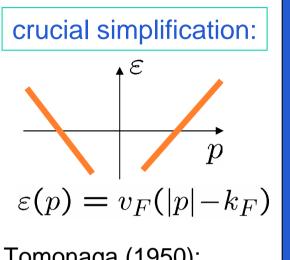
Zala, Narozhny, Aleiner, 2001

Electron density waves = waves of classical fluid Electron tunneling = quantum motion of fluid Quantized electron fluid = Luttinger liquid

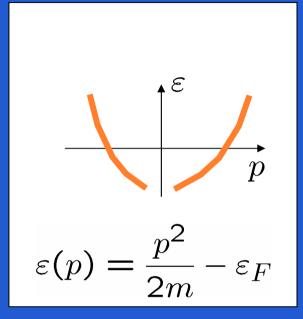
Linear (hydro)dynamics of density waves



Beyond the Tomonaga-Luttinger model

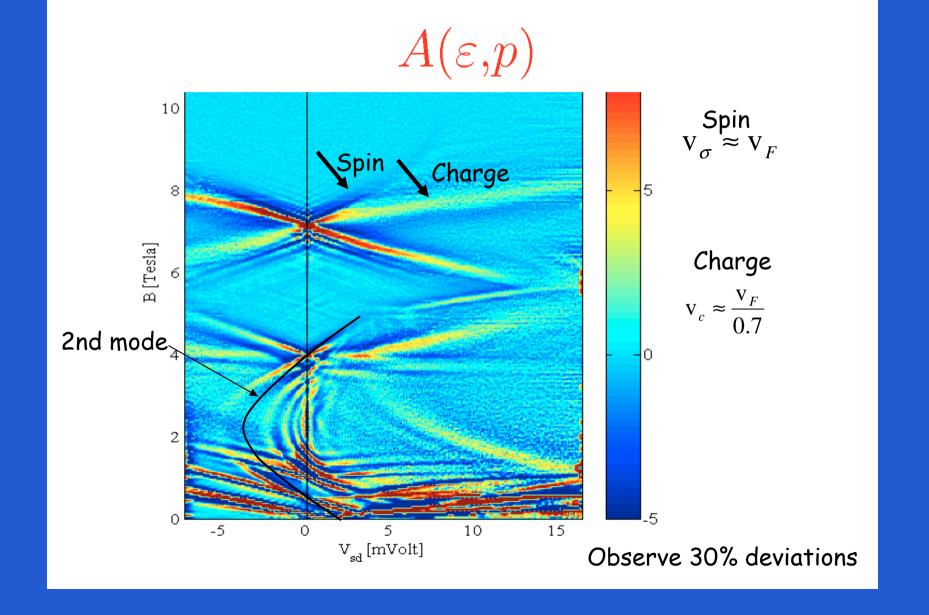


Tomonaga (1950); Luttinger (1963)

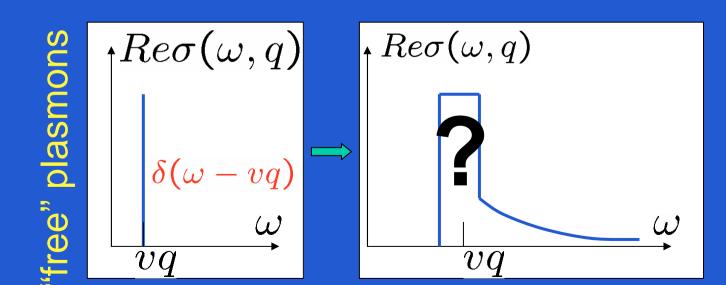


Non-linear dynamics of *quantum* waves

Spectral Function – big picture



Dissipative part of conductivity



Structure factor, susceptibility, conductivity

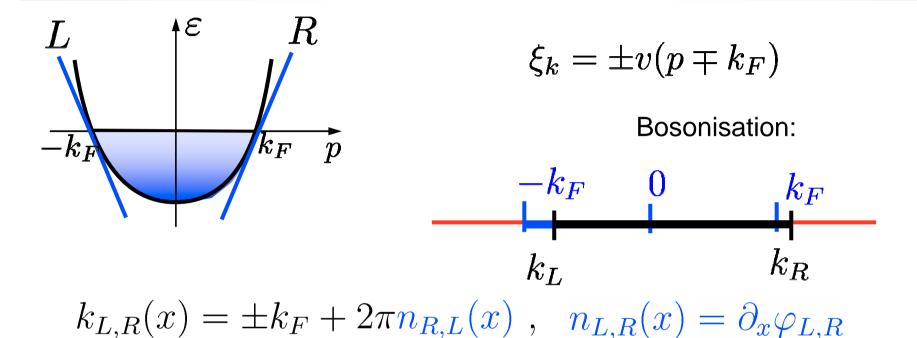
dynamic structure factor:

$$S(q,\omega) = \int dx \, dt \, e^{i(\omega t - qx)} \langle \hat{n}(x,t) \hat{n}(0,0) \rangle = 2 \operatorname{Im} \chi(q,\omega)$$

at $T = 0 \text{ (FDT)}$

$$\operatorname{Re}\sigma(q,\omega)\proptorac{1}{\omega}S(q,\omega)$$

Revisiting Tomonaga-Luttinger Model



$$H_{kin}(x) = \int_{k_L(x)}^{k_R(x)} \xi_k \, dk = \frac{v}{2} \left[(\partial_x \varphi_L)^2 + (\partial_x \varphi_R)^2 \right]$$
$$H_{int}(x) = V_{LL} (\partial_x \varphi_L)^2 + V_{RR} (\partial_x \varphi_R)^2 + 2 \frac{V_{LR}}{(\partial_x \varphi_L)} (\partial_x \varphi_R)^2$$

Structure factor for the linear spectrum

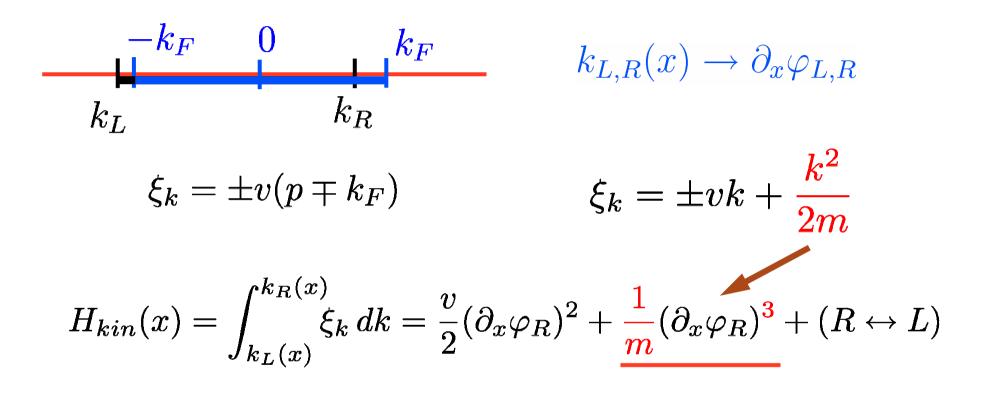
$$n(x) = \partial_x \varphi \quad \text{"phonons"}$$

$$S(q, \omega) = \left\langle n(q, \omega)n(-q, -\omega) \right\rangle \propto \left\langle \varphi(q, \omega)\varphi(-q, -\omega) \right\rangle$$

$$\sim q \,\delta(\omega - \tilde{v}q)$$

$$M = \int_{0}^{\infty} Q \quad S(q, \omega) \int_{\tilde{v}q}^{\infty} Q \quad S(q, \omega) \int_{\tilde{v}q}^$$

Spectrum curvature: anharmonic bosons



 $H_{int}(x) = V_{LL}(\partial_x \varphi_L)^2 + V_{RR}(\partial_x \varphi_R)^2 + 2V_{LR}(\partial_x \varphi_L)(\partial_x \varphi_R)$

Curvature in perturbation theory

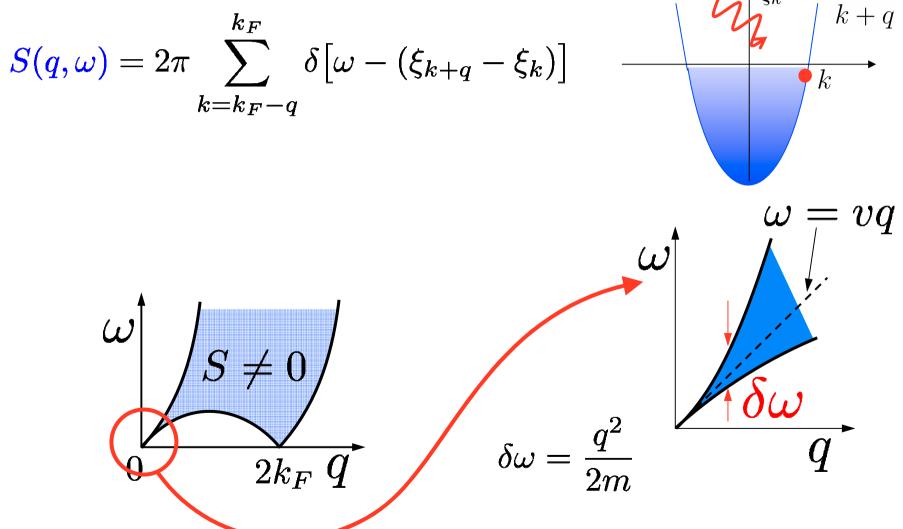
$$\delta H = \frac{1}{m} (\partial_x \varphi_R)^3 + (R \leftrightarrow L)_{S(q,\omega)} \left(\begin{array}{c} & & \\$$

$$\chi(q,\omega) = \left\langle -i\theta(t) \left[\hat{n}(x,t), \hat{n}^{\dagger}(0,0) \right] \right\rangle_{q,\omega} \to \frac{q}{\omega - vq - \Sigma_{\text{Boson}}(\omega,q)}$$
$$\Sigma^{(2)}(\omega = vq,q) = \frac{1}{m^2} \cdot \infty$$

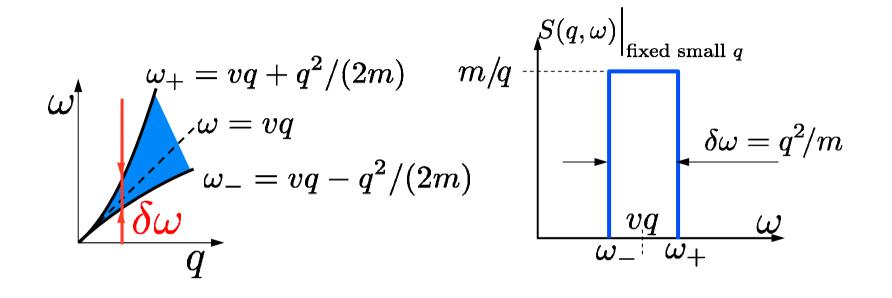
Divergent at $\omega = vq$

Free fermions, curved spectrum

Lehmann (Golden rule - like) representation



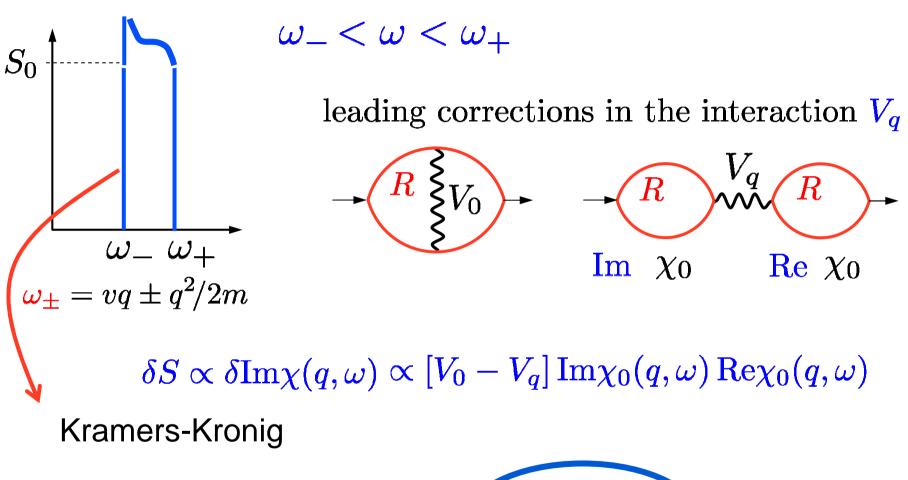
Curvature: free fermions perspective



$$\delta\omega = q^2/m \sim \omega^2/\epsilon_F$$

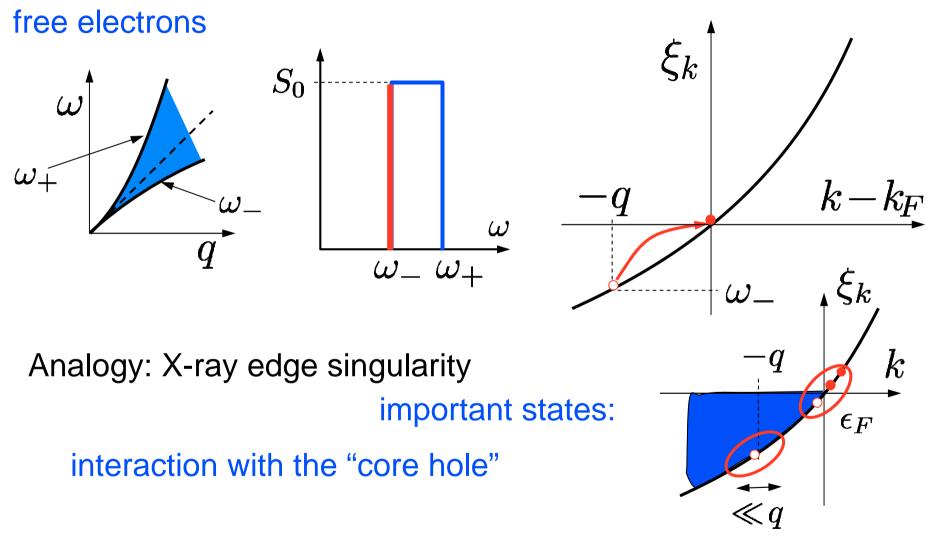
- the peak is narrow
- **but...** it is not a Lorentzian
 - $\delta \omega \propto 1/|m|$ (non-perturbative in curvature)

Perturbation theory: near the shell



$$\Rightarrow \frac{\delta S}{S_0} = \frac{v}{2\pi q} [V_0 - V_q] \left(\ln \left[\frac{\omega_+ - \omega}{\omega - \omega_-} \right] \right)$$

Beyond perturbation theory, $\omega \rightarrow \omega_{-}$



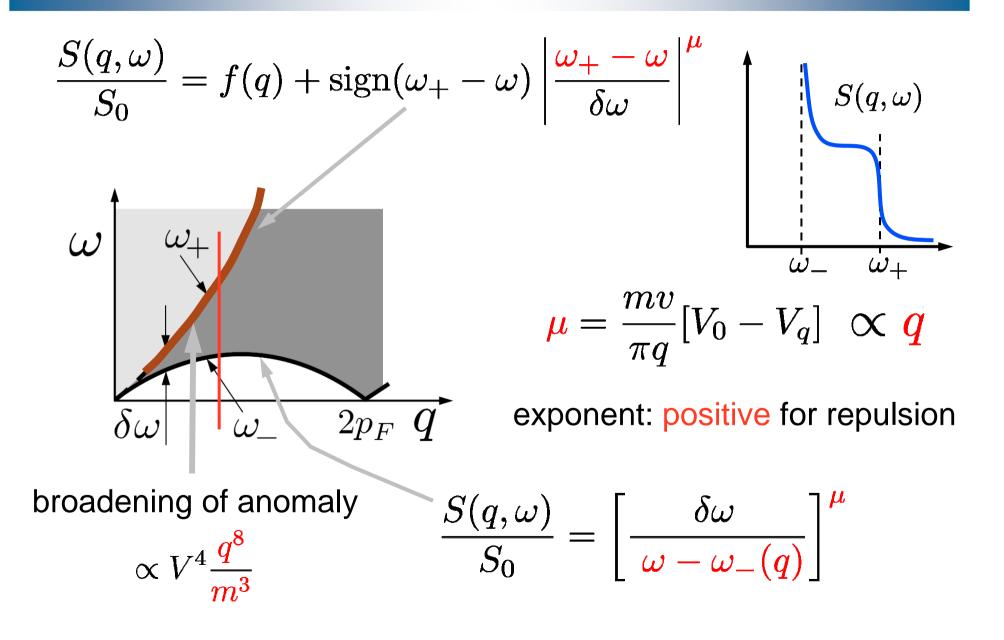
singularity $[\ln(\omega - \omega_{-})]^n$ in each order of perturb. theory

Fermi edge singularity in metals

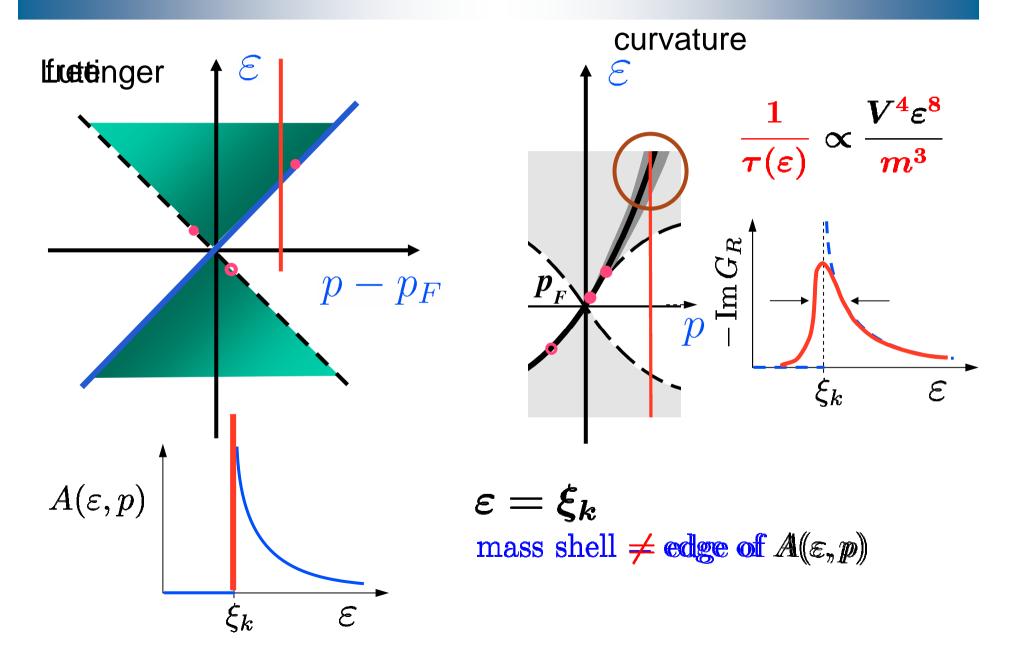


threshold + interactions = power law

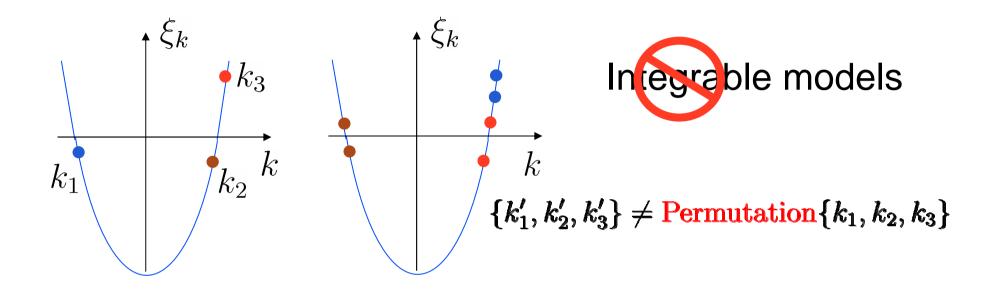
Effect of Curvature on Structure Factor



Spectral Function in 1D



Relaxation rate $1/\tau(k)$



Luttinger Liquids – other stuff

- Shot noise "charge fractionalization"
- Resonant tunneling
- Quantum fluctuations of charge in large quantum dots
- Coulomb drag, thermopower
- Dynamics of cold atoms confined to 1D
- Inelastic neutron scattering off S=(odd/2) spin chains
- Spin-incoherent Luttinger liquid