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A. M. Finkel’stein

Electron Liquids: Ground State

I. INTERACTIONS IN A SYSTEM OF BROAD-BAND ITINERANT ELECTRONS

A. Introduction remarks

Hel liquid =
∑

i

p2
i

2m
+

1
2

∑

i,j

VCoulomb(ri − rj)

+ interaction with background; (1)

in semiconductors m → mb and e2 → e2/ε.

Unlike the ordinary gas, the interaction of electrons can be neglected only for high density, while
at low or even intermediate densities it is a system of strongly interacting particles.

What is a possibility of the ferromagnetism in the liquid of itinerant electrons?

B. Physical meaning of rs = r0/aB

A dimensionless parameter where r0 is the radius of an artificial sphere ”belonging” to one electron
in the electron liquid, and

aB = ~2/me2 ≈ 0.529Å= 5.29nm.

In the case of semiconductors one should use the band mass mb and e2/ε. It can easily be that
a∗B À aB. Rydberg

E(pF ) as a typical kinetic energy. What is pF (defined as a position of a jump in the occupation
numbers) in the interacting system?

The Luttinger theorem: the jump in the occupation numbers occurs along the Fermi surface in
such a way that it confines the same volume in the momentum space as if the fermion particles are
free from interactions

N = 2
∑

p<pF

1 =|3D 2
4πp3

F

3(2π~)3
V = V

p3
F

3π2~3
. (2)



2

pF r0

~ 3D
=

(
9π

4

)1/3

≈ 1.9. (3)

EF−free;3D =
p2

F

2m
=

(
9π

4

)2/3 ~2

2mr2
0

=
(

9π

4

)2/3 1
r2
s

(
me4

2~2

)
. (4)

In terms of
(

me4

2~2
)

= 1 Ry,

EF−free;3D =
3.68
r2
s

Ry. (5)

EC =
e2

εr0
=

e2

rsa0
=

2
rs

Ry. (6)

Combination e2/}vF (more precisely e2/ε}vF ):

e2

ε}vF
=

e2

εaBrs

r0

}vF
=

2r0

}vF

Ry
rs

. (7)

e2

ε}vF |3D
=

rs

1.9
. (8)

If rs . 1, the Coulomb interaction is effectively small and can be treated perturbatively.

In the opposite case of large rs (low electron density) both the kinetic energy and the energy of
e-e interaction decrease, but the kinetic energy does it faster.

In the region of moderately large rs a quantitative treatment of the effects of the Coulomb inter-
action is problematic.

In 2D one has to substitute 1.9 by
√

2:

pF r0

~
=
√

2; EF =
2
r2
s

Ry; (9)

e2

ε}vF
=

rs

√
2

;
EC

EF
= rs. (10)

The energy of the bound states in 2D :

En = −4/(2n + 1)2 Ry where n = 0, 1, 2...
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C. what deviation of rs from unity says

Typical value of EF in simple metals is about few eV . Let it be 5eV (this should be compared
with 1 Rydberg = 13.6eV).

mc2 ≈ 0.5meV (by comparison with c, one can easily evaluate that in metals vF ∼ 103km/ sec ∼
10−2c). Therefore, e2

}vF
= e2

}c
c

vF
≈ 51/2 100

137 ≈ 1.5. We estimate that rs ≈ 3.

In simple metals 2 . rs . 5.5. Why it is systematically > 1?

In a hydrogen molecule H2

rs = 0.74
2·0.53 ≈ 0.7.

A substantial deviation from rs ∼ 1 indicates that there should be an additional component of
non-Coulomb origin which shifts the equilibrium from a point where rs ∼ 1.

The strongly interacting electrons with rs systematically exceeding 1, and an almost free Fermi
surface, are in fact the consequence of the pseudo-potential physics

D. Charged Background and Electro-neutrality

H =
∑

εpa
†
pσapσ +

1
2V

∑

pqk;σ,σ′
VC(k)a†p+k,σa†q−k,σ′aqσ′apσ + background (11)

the 3D Fourier transform of the Coulomb interaction is equal to VC(k) = 4πe2/εk2; note that
together with factor 1/V the interaction term in the Hamiltonian has a correct dimension of
energy

The 2D Fourier transform of the 3D Coulomb interaction yields VC(k) = 2πe2/ε | k |.

[Electrons are confined within a 2D plane, but the electric field does not. Therefore, the Poisson
equation should be solved in 3D. That is how the 2D transform of the 3D Coulomb interaction
appears. One can look on it as 4πe2

∫
dkz/ε(k2+k2

z), where the kz- integration fixes the z-coordinate
in the 3D Coulomb interaction e2/

√
r2 + z2within the plane z = 0.]

The singularity at in VC(k) k → 0 leads to a serious complication when one naively averages the
interaction term

EHartree =
1

2V

∑

pqk;σ,σ′
VC(k)

〈
a†p+k,σa†q−k,σ′aqσ′apσ

〉
⇒ (12)

=⇒ 1
2V

∑

pqk;σ,σ′
VC(k)

〈
a†p+k,σapσ

〉〈
a†q−k,σ′aqσ′

〉
=

k=0

1
2V

∑

p,q;σ,σ′
VC(k = 0)npσnqσ′ .
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Small-k terms yield Q2/2C with a capacitance C ∼ L.

Instead of Q, one has to consider the charge difference (Q − Qbgr) and correspondingly the total
energy of charges is (Q−Qbgr)2/2C

The condition of electro-neutrality:

lim(Q−Qbgr)/V → 0

For a mesoscopic system of a nano-scale size the effect introduced by a finite charge leads to an
important phenomenon, which is called the Coulomb blockade.

For low dimensional electrons confined within a conducting channel of a nanometer scale width
one can vary the density of electrons in wide limits.

When the charging energy is ignored, one simply excludes the k = 0 Fourier-components from
all Coulomb interactions. Then, the sum over momenta in the e-e interaction is written as∑

pqk 6=0 VC(k)a†p+k,σa†q−k,σ′aqσ′apσ.

E. Correlations: (i) Exchange interaction

ΨHartree−Fock = a†Na†N−1 · · · a†j · · · a†1 | empty vacuum〉, (13)

where the states 1, ...j...N − 1, N cover all the wave functions with the momenta p < pF . The
kinetic energy per one particle

Eav =
3
5
EF =

2.21
r2
s

Ry. (14)

The Fock term represents the exchange contribution into the energy of interaction:

EFock =
1

2V

∑

pqk;σ,σ′
VC(k)

〈
a†p+k,σa†q−k,σ′aqσ′apσ

〉
⇒ (15)

− 1
2V

∑

pqk;σ,σ′
VC(k)

〈
a†p+k,σaqσ′

〉〈
a†q−k,σ′apσ

〉
=

q=p+k;σ=σ′
− 1

2V

∑

p,k;σ

VC(k)np+kσnpσ.

Unlike the Hartree term, there is only one summation over spins in the Fock term.

a pair of electrons exchange their states: (p + k)σ À pσ
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In the case of contact interaction V (q) = const, the interaction contributions within the same spin
species are cancelled out.

The Green’s functions presented in the Hartree-Fock diagrams were substituted by the occupation
numbers. It works only for a Green’s function at equal times: G(t1, t2)t1→t2 . Coulomb interaction
is instantaneous, and forces the time difference to be zero.

A note about the volume factors: Each summation when substituted by the integration yields
a factor of volume. So, eventually one gets an expression that is explicitly proportional to the
volume, as it should be for an extensive property. In many articles this volume factor is omitted,
assuming V = 1.

In 3D the Fock term yields the exchange energy per particle equal to

Eexch;3D = − 1
2NV

∑

p,k;σ

VC(k = 0)np+kσnpσ = −0.916
rs

Ry. (16)

The Hartree-Fock energy:

EHF;3D =
(

2.21
r2
s

− 0.916
rs

)
Ry. (17)

F. Correlations: (ii) non-zero spin polarization

In the discussed case the Hartree term is absent, and therefore in the Hartree-Fock approximation
the two spin species are disconnected;

EHF = EHF (pF ), but for the fully polarized state pF↑ = 21/3pF .

The difference in energy of the fully polarized states versus the unpolarized phase per one electron:

∆EHF ;3D =
1.30
r2
s

− 0.238
rs

. (18)

It becomes negative when rs ≥ 5.46.

The 2D electron gas (liquid) in heterostructures can be made very dilute. The energy difference
between the unpolarized and polarized state in the Hartree-Fock approximation is equal to

∆EHF ;2D =
1
r2
s

− 1.2(
√

2− 1)
rs

Ry. (19)
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It changes its sign at rs ≈ 2.

The output of the measurements of the spin susceptibility: no transition into the ferromagnetic
state so far. What is wrong?

G. Correlation functions (following the book of Pines)

The instantaneous density-density correlation function ρ2(r1, r2) :

ρ2(r1, r2) =

〈
Ψ

∣∣∣∣∣∣
∑

a,b

δ(r1 − ra)δ(r2 − rb)

∣∣∣∣∣∣
Ψ

〉
≡ (20)

∫
· · ·

∫
Ψ∗{ri}N





∑

a,b

δ(r1 − ra)δ(r2 − rb)



Ψ{ri}NdNri,

This function carries the information about the instantaneous (i.e., a snapshot photo) distribution
of the electron density in the ground state. For the translational invariant state, ρ2(r1, r2) depends
on the difference r = r1 − r2:

ρ2(r) =
1
V

〈
Ψ∗

∣∣∣∣∣∣
∑

a,b

δ(r− ra + rb)

∣∣∣∣∣∣
Ψ

〉
. (21)

It is common to introduce a function p(r), such that

ρ2(r1, r2) = ρ̃ p(r1 − r2), (22)

where ρ̃ = N/V is the average density. Obviously, at large distances p(r → ∞) = ρ̃ = N/V. The
function p(r) determines the structure form factor:

S(k) =
∫

p(r)e−ikrdr. (23)

With the use of

p(r) =
1
N

〈
Ψ∗

∣∣∣∣∣∣
∑

a,b

δ(r− ra + rb)

∣∣∣∣∣∣
Ψ

〉
, (24)

one gets,

S(k) =
1
N

〈
Ψ∗

∣∣∣∣∣∣
∑

a,b

e−ik(ra−rb)

∣∣∣∣∣∣
Ψ

〉
=

=
1
N

〈
Ψ∗

∣∣∣∣∣
∑

b

eikrb
∑

a

e−ikra

∣∣∣∣∣Ψ

〉
=

1
N

〈
Ψ∗

∣∣∣ρ†(k)ρ(k)
∣∣∣Ψ

〉
. (25)
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A term which describes a trivial correlation of a particle with itself, i.e., when a = b can be single
out

p(r) = δ(r)|a=b
+

1
N
〈Ψ|

∑

a 6=b

δ(r− ra + rb)|Ψ〉

= δ(r) +
(N − 1)

V
g(r). (26)

g(r) is the binary correlation function characterizing the probability to find two different particles
on a distance r from each other.

g(r) =
V

N(N − 1)
〈Ψ|

∑

a6=b

δ(r− ra + rb)|Ψ〉. (27)

If there is no correlations g(r) = 1. At large distances particles do not know about each other, and
move without correlations: g(r →∞) = 1.

Technically it is more convenient to calculate g(r) via S(k):

S(k) = 1 +
N − 1

V
g(k); g(r) =

1
N − 1

∑

k

(S(k)− 1)eikr. (28)

The density operator

ρ(k) =
∑
p,σ

a†(p+k)σapσ. (29)

The structure form factor:

S(k) =
1
N
〈Ψ|

∑

p,q;σ,eσ
a†(p+k)σapσa†(q−k)eσaqeσ|Ψ〉 =

1 +
1
N
〈Ψ|

∑

p,q;σ,eσ
a†(p+k)σa†(q−k)eσaqeσapσ|Ψ〉. (30)

In the Hartree approximation only the average within the same pairs is permitted. For k 6= 0 the
second term vanishes, and

SH(k) = 1 + (N − 1)δ0,k. (31)

Correspondingly,

g(r) =
1

N − 1

∑
[S(k)− 1]eikr Hartree=

1
N − 1

∑

k=0

eikr(N − 1)δ0,k = 1. (32)

No correlations, as it should be in the Hartree approximation.

The exchange term:
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SHF(k) = 1 +
1
N
〈ΨHF|

∑
a†p+k,σa†q−k,eσaq,eσap,σ|ΨHF〉 =

1 + (N − 1)δ0,k − 1
N

∑
p,σ

np+k,σnpσ for k 6=0 only.

For k > 2kF the sum in the last term vanishes, and SHF(k > 2kF ) = 1. This expression can be
rearranged in a way that the limitation k 6= 0 can be omitted:

SHF(k)
rearrangement

= Nδ0,k +
1
N

∑
p,σ

npσ(1− np+k,σ). (33)

(At T = 0, np(1− np+k) → 0 when k → 0 as the same state cannot be empty and occupied at the
same time.) Finally,

SHF;3D(k) = Nδ0,k +
3
4

k

kF
− 1

16
k3

k3
F

; k < 2kF (34)

= 1 k > 2kF . (35)

The function SHF(k) is non-analytic at k = 2kF .

For the binary correlation function one gets:

gHF(r) = 1− 9
2

[
sin(kF r)− kF r cos(kF r)

k3
F r3

]2

. (36)

The obtained 2kF -oscillation dependence in g(r) is a poor cousin of the famous Friedel oscillations
induced in the density of conducting electrons by a point defect.

It is natural to split gHF(r) in two pieces

gHF(r) =
1
2

+ g↑↑HF(r) (37)

The Pauli principle provides a strong correlation effect for electrons with parallel spins at small
distances, g↑↑HF(r → 0) = 0.

Since the correlations keep electrons with the parallel spin projections away from each other, the
curve g(r) should go below gHF(r) at small r.

The decoration of Slater determinant by the correlation factors:

Ψcorr = χslater

∏

a 6=b

f(ra − rb). (38)
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The correlation factor can be chosen such that

f(r) → 0; when r → 0
→ 1; when r →∞

The energy, which is gained in the e-e interaction (! interaction, but not the total energy) due to
the correlations

Ee−e =
e2

2

∫
ρ̃

[
g(r)− 1

r

]
dr. (39)

The difference (1− g(r)) sometimes is called the correlation hole.

In the Hartree approximation, g = 1, and Ee−e = 0. For the unpolarized Hatree-Fock this expres-
sion yields a term −0.916/rs Ry in EHF. Some energy is gained in the energy of the e-e interaction,
but not as much as for the spin polarized state where g(r → 0) = 0.

By modifying the wave function with the correlation factors the situation with the interaction
energy can be made almost as good as in the spin polarized case but paying not so much in the
kinetic energy.

[Confusion because of semantics:

the term ”correlations” is commonly used in two sense: as an effect that keeps electrons away from
each other and also as a modification of the wave function of the unpolarized state compared to
the Hartree-Fock solution.]

At large rs, the energies of different states are such that

EHF−unpol > EHF−pol > Ef−corr
pol > Ef−corr

unpol . (40)

Compared to EHF−unpol, the energy Ef−corr
unpol acquires a relatively big gain in the e-e interaction,

∆Ef−corr
unpol−ee < 0, and a moderate loss in the kinetic energy ∆Ef−corr

unpol−kin > 0. For Ef−corr
pol both

corrections are small. In result, Ef−corr
unpol may become the most favorable state.

H. Wigner crystal at rs À 1

Arranging electrons in a lattice is an effective way to increase the negative value of the correlated
energy.
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The electrostatic energy (per electron) of the lattice ELattice = 1
2N

∑
a,b

e2

|Ra−Rb| = 1
2

∑
a6=0

e2

Ra
.

Together with the compensating background,

Ech arg e =
1
2

∑

a6=0

e2

Ra
− 1

2

∫
ρ̃
e2

r
dr; (41)

Ech arg e;3D = −1.792/rs Ry. (42)

(Should be compared with −0.916/rs obtained for unpolarized Hartree-Fock, or −1.15/rs the
polarized one.)

Copying the nature: in the ”atomic units” redefined for ions, should stand the ion mass M instead
of m. Ions in the metals are in the extreme dilute conditions, %s = (M/m)rs ≫ 1. Liquid of
charged fermions have to copy ions when it is very dilute. Wigner himself used a term ”inverted
alkali metal”.

Quantum effects in the Wigner crystal: an electron moves in the potential well created by the
electrostatic interaction with other electrons. As a trial wave function, one can take the Slater
determinant from the set of wave functions:

Φα(xi) = φ(ri −Rα)χσ(ξi). (43)

where φ are the oscillatory wave functions φ(δr) ∼ exp(−1
2(δr/ζ)2) centered around points Rα of

the Wigner crystal; ζ is the variation parameter.

The accurate calculation yields Ezpm = 2.66/r
3/2
s Ry. The obtained estimate of the energy of

electrons in the Wigner crystal state yields

EWigner = Ech arg e + Ezpm = −1.792/rs Ry + 2.66/r3/2
s Ry. (44)

[What stands in Ezpm is 3/2 of the Debye frequency of electrons. Let us compare it with the Debye
frequency of ions. One should first substitute rs with %s and introduce M in the fake Rydberg.
Then, to express everything back in the atomic units: ωD ∼

(
m
M

)1/2
r
−3/2
s Ry ∼ 103K, as it should

be.]

I. The hierarchy of energies in the electron liquid at different rs

At small rs: 1) kinetic energy > 2) Coulomb energy > 3) and 4) correlation corrections to the e-e
interaction and the kinetic energy. The Coulomb energy here is given in the form of the exchange
interaction, i.e., the Fock term. The correlation energy appears because of modification of the wave
function, e.g., by the f -factors.

At large rs (both for liquid and Wigner crystal): 1) the interaction of electrons > 2) kinetic energy
> 3) correlation energy treated as corrections to the zero-point motion > 4) exchange energy.

The dominant term in the Coulomb interaction has been evaluated as the Hartree term for the
Wigner crystal. In the liquid phase, it stems from the correlations in the e-e interaction. Exchange
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is given as the ring exchange of few electrons. In the Wigner crystal it is responsible for spin
arrangement.

The interpolation formula for the correlation energy in the unpolarized liquid at intermediate values
rs (Pines, following Wigner):

Ecorrelation = − 0.88
rs + b

Ry. (45)

(In the old days the correlation energy was always defined as the deviation of the total energy of
the system from the EHF.)

Note that −0.916
rs

+ −0.88
rs

= −1.8
rs

.

The constant b was chosen from the Wigner’s estimate of the energy of the electron liquid at rs . 1.

In 2D,

EWigner = −2.21/rs Ry + 1.63/r3/2
s Ry. (46)

The Monte Carlo calculations show that in D = 2 the Wigner crystal becomes a ground state only
at rs & 35.

Should we be surprised that electron liquid remains stable up to rs as large as 35?

II. ELECTRONS IN QUANTIZED MAGNETIC FIELD

A. Remarks for orientation

In the given B⊥, the particle capacity of one Landau level is equal to NLL = φ/φ0, where φ = SB
is the total flux piercing the area S and the quantum flux φ0 = 2π}/e.

The filing factor is equal to ν ≡ N/NLL = N φ0

φ = 2π}
eB ρ̃, where ρ̃ is the particle density N/S of 2D

electrons.

Strong magnetic field radically changes the rule of the game.

What are the natural units for electrons in the quantized magnetic field?

For orientation: cyclotron frequency ωc = }eB
mc , the cyclotron radius l = (~c/eB)1/2, and EF(B =

0) = ν
2ωc. The ratio of l to the typical distance between the electrons, r0 = 1/(πρ̃)1/2:

l/r0 =
(

π~cρ̃
eB

)1/2

=
(ν

2

)1/2
. (47)

The ratio EC/ωc = (ν/2)(EC/EF ) = (ν/2)rs. It will be assumed that

(ν/2)rs ¿ 1. (48)
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The minimal problem:

electrons confined within the lowest Landau level;

admixture with higher Landau levels is ignored.

Also for simplicity it will be assumed that the electrons are fully spin polarized by the magnetic
field.

The uncertainty of the order l of the two coordinates of a particle, [x, y] ∼ l2.

Similarity with the Wigner crystal:

The main energy scale is the energy of the Coulomb interaction on the inter-particle distance.

Besides that, there are corrections induced by the quantum fluctuations: Ezpm ∼ EC(δr/r0)2.

Difference: the energy Ezpm is controlled by the magnetic field.

The estimate of the relative strength of quantum fluctuations gives Ezpm/EC ∼ (l/r0)2 = ν/2.

In the Wigner crystal (δr/r0)2 ∼ 1/r
1/2
s .

ν ¿ 1 acts as 1/r
1/2
s

The energy of electrons at the lowest Landau level is defined in units e2/l. Omitting ωc/2, the
main term in the energy per particle is ∼ ν1/2, while the leading correction is about ν3/2.

B. Laughlin state

What kind of wave functions are in play?

The wave function of an electron projected on the lowest Landau level is an arbitrary polynomial
of z = (x + iy)/l multiplied by the exponential factor exp(− |z|2 /4l2).

(The exponential factor is the same for all states and people keep it in mind but not always write.)

The Slater determinant for the case when the filling factor ν = 1:

ψν=1
HF =

φ1(z1), · · · , φj(z1), · · · , φN (z1)
φ1(z2), · · · , φj(z2), · · · , φN (z2)

· · · , · · · , · · · , · · · , · · ·
φ1(zN ), · · · , φj(zN ), · · · , φN (zN )

∣∣∣∣∣∣∣∣
(49)

Functions φα will be taken within the polynomials with the powers of z not exceeding N .

The answer is
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ψν=1
HF (zı, · · · , zN ) =

∏

ı6=j

(zı − zj) exp

(
−

∑

i

∣∣z2
i

∣∣
4

)
(50)

This state has been constructed following the Hartree-Fock recipe. In fact, for ν = 1 this is the
only possible solution.

ν = 1/3, =⇒ lot of degeneracy is remained.

The ground state of a quantum liquid should be featureless:

ψ
ν=1/3
L (zı, · · · , zN ) =

∏

ı 6=j

(zı − zj)3 exp

(
−

∑

i

∣∣z2
i

∣∣
4

)
(51)

Polynomial character of the wave functions controls the wave function both on the short and long(!)
distances. Like in the case of ν = 1, (almost) all resources are exhausted.

Laughlin’s wave functions wins the competition in energy with the Wigner crystal from ν = 1/3
to ≈ 1/5.

C. Laughlin’ liquid versus Wigner’ crystal at small ν (following the discussion of Lam and
Girvin (1984)).

The Hartree-Fock wave function of the Wigner crystal (i.e., the uncorrelated Wigner crystal)

Ψuncorr
WC (zı, · · · , zN ) = antisymmetrized

N∏

α=1

φα(zi). (52)

φα(zi) is a single-particle state located near the site Rα of a probe lattice, which eventually is
determined as triangular.

Function φα(zi) is a product of two terms (K.Maki and X. Zotos (1983)):

φα(zi) = (2π)−1/2 exp[−1
4
|zi −Rα|2 −−1

4
(z∗i Rα − ziR

∗
α)]. (53)

The remarkable feature of this function:

(i) it is constructed within the basis of the lowest Landau level,

(ii) the exponential location of a particle near the site Rα is not spoiled by the second factor

(z∗i Rα − ziR
∗
α)∗ = −(z∗i Rα − ziR

∗
α)
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Energy of the Hartree-Fock state of the Wigner crystal (ν < 1/2) is

Euncorr
WC = −0.782133ν1/2 + 0.2823ν3/2 + 0.18ν5/2(r)− 1.41e−2.07/ν . (54)

Here, −0.782133ν1/2 is the classic energy of the Coulomb energy. The last term describes exchange.

The correlated Wigner crystal state disfavors fluctuations corresponding to the longitudinal modes.
It gives a slightly improved energy of the zero-point oscillations: 0.2410ν3/2 + 0.16ν5/2.

Comparison with the energy of the Laughlin function. The interpolation formula for filling factors
ν = 1/(2m + 1):

EL = −0.782133ν1/2 + 0.165ν1.24 + .... (55)

!!!The Laughlin liquid state reproduces the classic energy of the Coulomb crystal!!!

The uncorrelated Hartree-Fock state beats the Laughlin liquid only around ν ∼ 1/9. For the
correlated one it happens at ν ∼ 1/6.

Surprisingly, ν ∼ 1/6 and rs ∼ 35 correspond to each other.

III. STABILITY OF THE ELECTRON LIQUID

A. Melting of a 2D quantum liquid

Why rs ∼ 35 may, is a surprisingly low number.

The Lindemann criteria for melting is
〈
δr2

〉1/2
/a ∼ 0.15.

In the Wigner crystal
〈
δr2

〉1/2
/r0 ∼ 1/r

1/4
s or (ν/2)1/2 in the case of the magnetic field. This

corresponds to (1/35)1/4 ≈ 0.4 and (1/10)1/2 ≈ 0.3.

Melting of a quantum mechanical object at T = 0.

Mapping:

2D the quantum problem of interacting particles can be mapped on the classical problem of inter-
acting elastic lines directed along the z-coordinate in 3D space. A world line of a two-dimensional
particle is isomorphic to the trajectory of the elastic line in three space dimensions.

The Feynman path integral for a fluid of interacting particles in 2D À

Àthe partition function of the arrays of the directed lines in 3D
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1
}

∫
m

(
dr
dt

)2

dt À 1
kT

∫
κ

(
du
dz

)2

dz (56)

Here the 2D vector u(z) describes a deviation of the elastic line from the position of equilibrium,
and κ is the coefficient of elasticity.

1
}

β2D∫

0

mdτ À 1
kT3D

L∫

0

κdz (57)

(Here β2D = 2π/T2D has nothing in common with T3D. In the mapping T2D → 0 if L, the length
of the 3D lines, tends to zero; T3D, which has as a counterpart }, remains finite.) Mostly, the
trajectories are slightly wiggling lines, but sometimes they entangle each other. Eventually this
leads to melting.

The system of lines is more stable against fluctuations than a crystal made of discrete points.

Lindemann criteria for melting of arrays of lines:

〈
δr2

〉1/2
/a is about 0.3 rather than 0.15.

B. Negative compressibility (many people were confused).

Perhaps should be said: negative chemical compressibility.

∂µ/∂n is negative for not too large values of rs.

Problem:

K−1 = λ = n2∂µ/∂n (58)

negative compressibility means an instability.

Condensed matter system as a set of springs with a distributed mass.

Capacitance measurements:

in GaAs heterostructures, ∂µ/∂n becomes negative at n . 1011cm−2, i.e., rs & 2.

(Unlike the spin susceptibility, the conclusion about negative compressibility, appeared to be not
a consequence of inaccuracy of the calculations.)

The resolution of the ”paradox”:
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(i) electric term

1
2

∫
δn(r)VC(r− r′)δn(r′)drdr′

(ii) ”material” or ”chemical” term originating from the expansion of the local energy,
1
2

∫
λ (δn(r))2

n2 dr=1
2

∫
(δn(r))2 ∂µ

∂ndr

The actual condition of stability

∂µ

∂n
(q) + VC(q) > 0. (59)

Why all that is so artificial?

After all, many condensed systems have itinerant electrons.

The condition of stability in the simplest case of a capacitor with the 2D gas on one side and the
gate on the other:

e2C−1
measured =

(
e
∂ϕ

∂n
+

∂µ

∂n

)
> 0, (60)

C−1
measured is the inverse of the capacitance per square

the two terms on the right hand side describe the response of the electrical and potentials, respec-
tively.

e2C−1
measured = (e2C−1

geometrical +
∂µ

∂n
) > 0, (61)

valid only for modulation with q < 1/d.

Finally

∂µ

∂n
(q) + min

{
VC(q), e2C−1

geometrical

}
> 0. (62)

C. Physics at short scales

For a distant electrode, a question arises about finite q.

What about the q-dispersion of ∂µ/∂n?
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(∂n/∂µ=π(q) the polarization operator of electrons)

The most natural behavior for ∂µ/∂n in the case of the strong interaction, is that it starts from a
negative value, passes through zero, and then continues to increases.

Can the two curves ∂µ
∂n(q) and −VC(q) touch each other?

The compressibility of the Wigner crystal

∂µ

∂n
(q = 0)Wigner crystal = −2.21

3πrs

8m
. (63)

In the experiment the compressibility changes its trend at rs & 4.5.

comment about the MI transition

For free electrons the compressibility stands constant as far as q < 2kF .

−VC(q = 2kF ) = −πrs/
√

2

∂µ/∂n as a function of q it starts deeper than −VC(q = 2kF ).

There is a chance that the two curves indeed intersect at large enough rs.

The moment of touching of the two curves means that a modulation of density starts to develop.

CDW

SDW

Two scenarios (assuming that the Wigner crystal is an ultimate solution):

(i) the gradual modulation of density eventually develops into the Wigner crystal

(ii) the Wigner crystal intervenes through the first order phase transition.

The Mexican-hat story in the theory of the solidification via CDW, stripes, etc.

Next circle: like Wigner crystal ”sits” inside the quantum liquid hidden by fluctuations, it may be
that correlations a la CDW or SDW exist much before they become visible as a result of the phase
transition.

Possibly for electrons in high Tc-systems.

Screening in Electron Liquids
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D. Screening as a condition of equilibrium

Screening, generally, is the result of response of a system of itinerant charges on an external
potential ϕprobe(r).

ϕprobe induces a redistribution of their density, δn(r). Together with the potential ϕprobe the
induced charges create a potential ϕscr(r).

ϕscr(r) is not an ultimate product of the presence of ϕprobe. The material part of the liquid (ev-
erything that is not related to electrostatic interactions, e.g., kinetic energy of electrons) changes
as a result of the redistribution of the density.

This leads to a change in the chemical potential which is equal to

δµ(q) = δn(q)
∂µ

∂n
(q), (64)

Together the three contributions: (i) ϕprobe, (ii) potential of induced charges ≡ (ϕscr−ϕprobe), plus
(iii) δµ(q) should be equal zero.

ϕprobe + (ϕscr − ϕprobe) + δn(q)
∂µ

∂n
(q) = 0. (65)

The equality implies that the electrochemical potential in the equilibrium is kept constant over the
space.

The two coupled equation should be solved

(ϕscr − ϕprobe) = δn(q)VC(q), (66)

δn(q) =
−ϕprobe(q)

∂µ
∂n(q) + VC(q)

. (67)

Finally,

ϕscr =
ϕprobe

∂µ
∂n(q)

∂µ
∂n(q) + VC(q)

≡ ϕprobe

1 + ∂n
∂µ(q)VC(q)

. (68)

(
∂µ
∂n(q) + VC(q)

)
> 0 ensures the stability of the system
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A condensed matter system as a set of elastic strings: δn(q) has a sign opposite to a probe charge
e0 creating ϕprobe. The stable system provides a response opposing the perturbation as it should
be.

Hohenberg and Kohn ”Inhomogeneous Electron Gas” Phys. Rev. 136, B 864 (1964).

”This paper deals with the ground state of an electron gas in an external potential v(r). It is
proved that there exists a universal function of density, F [n(r)], independent of v(r), such that
the expression E ≡ ∫

v(r)n(r) + F [n(r)] has as its minimum value the correct ground-state energy
associated with v(r). The functional F [n(r)] is then discussed for two situations: (1) n(r) =
n0 + ñ(r), ñ/n0 ¿ 1, ...This approach also shed light on generalized Thomas-Fermi screening
methods and their limitations...”

A non-trivial jump: instead of a complicated quantum-mechanical problem, a classic system under
the condition that its quantum-mechanically averaged density is n(r).

For a given potential ϕexternal(r), which is not obligatory small, the energy functional

Eϕexternal
[n(r)] ≡

∫
ϕexternal(r)n(r)dr+F [n(r)], (69)

where

F [n(r)] =
1
2

∫
δn(r)δn(r′)
|r− r′| drdr′ +

1
2

∫
δn(r)K(r− r′)δn(r′)drdr′ + (70)

1
2

∫
δn(r)δn(r′)δn(r′′)L(r, r′, r′′)drdr′dr′′ + ... (71)

The inverse of the kernel K(r− r′) is determined by the irreducible (with respect to the Coulomb
interaction) density-density correlation function 〈δn(r)δn(r′)〉.

In the usual terminology this correlation function is called the polarization operator π(q), and as
such used instead of ∂n

∂µ(q).

From the condition for equilibrium one has

ϕexternal(r) +
∫

δn(r′)
|r− r′|dr

′ + δF [n]/δn(r) = µel−chem. (72)

The first two terms constitutes the electric potential of charges, the last one represents the chemical
potential.

µel−chem is the electro-chemical potential, which is maintained to be spatially constant.

To proceed further one need to know the ”material” part of F [n]. The simplest approximation:
δF [n]/δn(r) = Efree

F [n(r)]. Then, from the condition for equilibrium one has
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ϕexternal(r) +
∫

δn(r′)
|r− r′|dr

′ + Efree
F [n(r)] = µel−chem. (73)

Finally, one rewrites all that in the form of two self-consistent equations:

n(r) = nfree[µel−chem − ϕexternal(r)− ϕinduced(r)], (74)

ϕinduced(r) =
∫

δn(r′)
|r− r′|dr

′. (75)

Historically, it the set of two equations was written by Thomas and Fermi using locality and the
argumentation which is called self-consistency.

”But where is this self-consistency?”

The same quantity δn(r) creates ϕinduced(r) and maintains the equilibrium.

E. Screening as an infinitely repeating process of polarization

ϕscr(q) =
ϕprobe(q)

1 + VC(q)π(q)
. (76)

Instead of ∂n
∂µ(q) people use the term polarization operator π(q).

Why?

If formally expand ϕ(q) with respect to VC(q), one gets a geometrical series:

ϕ(q)scr = ϕprobe(q)− ϕprobe(q)π(q)VC(q) + ϕprobe(q)π(q)VC(q)
∂n

∂µ
(q)VC(q)...

It turns out that in order to describe screening it is not possible to be limited to any finite order
in e2.

”Why did not we notice this infinite series in the self-consistent derivation of the effect of screening”.

A remark about self-consistency.

Generating of the repeating process in the case of screening.

Reminding: by varying µ(r), one introduces in the Hamiltonian the term δµ(r)n(r). Therefore,
finding of ∂n

∂µ(q) ≡ π(q) reduces to the calculation of the density-density correlation function (irre-
ducible with respect to a single Coulomb interaction line).
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For free electrons ∂n
∂µ(q = 0) = 2ν, where ν is the density of states per one spin species.

The need in summation of the infinite series versus the perturbation with respect to the small
parameter e2/}vF .

Does it actually work?

All virtual states with more than one electron-hole pair in the process of polarization can be treated
perturbatively.

For a point-like probe charge e0

ϕ3D
scr (q) = 4πe0/(q2 + 4πe2 ∂n

∂µ
(q)). (77)

It is regular at q → 0

ϕscr(q) = 4πe0/(q2 + κ2
scr); κscr =

(
4πe2 ∂n

∂µ
(q → 0)

)1/2

. (78)

!!!

!!! e2/}vF ¿ 1 À κscrκscr ¿ kF !!! (79)

The Fourier transform of ϕscr(q). For π(q) its value at q ≈ 0. Then, pole at an imaginary
qpole = ±iκscr

qpole =⇒ ϕscr(r) =
e0

r
exp(−κscrr), (80)

κscr acquires the meaning the inverse radius of screening

rscr =
(

4πe2 ∂n

∂µ
(q → 0)

)−1/2

; rscr = κ−1
scr . (81)

Most important:

the inequality e2/}vF ¿ 1 implies that the screening cloud is very extended, i.e., its radius exceeds

much the inter-particle distance. Under the condition rscr =
(

1
4πe2

∂µ
∂n(q → 0)

)1/2
À r0, the local

Thomas-Fermi approximation has firm grounds.

Role of the Fermi statistic. A need in the energy scale.
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The Debye-Huckel radius of screening is equal to ( T
4πe2n

)1/2.

Fermi statistic provides us with an energy scale (EF instead of T ).

Exponential screening with a finite screening length is not the whole and not true story. Friedel
oscillations.

The end of the firm territory e2/}vF ¿ 1.

F. Screening when the compressibility is negative

In the case when ∂µ
∂n(q → 0) < 0 the blind application of the standard formula ϕtotal(r) =

e0
r exp(−r/rscr) leads to a pathological result

ϕtotal(r) =
e0

r
cosκr =⇒ absurd (82)

”why not? It is an overreacting system.

Why not to imagine this formula as a result of a poorly convergent procedure.”

An erroneous idea. What is the trend?

How can it be that it disappears at all?

All Fourier components of the induced charge density provides a response with a sign opposing the
perturbation:

δn(q) =
−ϕprobe(q)

∂µ
∂n(q) + VC(q)

, (83)

No accumulation of a charge with a wrong sign. The screening cloud exactly compensates (i.e.,
equal and opposite) the one creating the external potential.

The standard looking result

ϕscr =
ϕprobe

∂µ
∂n(q)

∂µ
∂n(q) + VC(q)

≡ ϕprobe

1 + ∂n
∂µ(q)VC(q)

. (84)

!!!

when the compressibility is negative: potentials ϕscr and ϕexternal have opposite signs.

!!!

What is my purpose, now.
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I try to show that the description of screening how it was done in the past by Debye and Huckel
is not the only one.

The point is how to solve the set of two equation ϕprobe(r) + ϕinduced(r) = ϕscr(r) and ϕscr(r) +
ϕchem(r) = 0 perturbatively.

In the standard route, one first equalizes ϕprobe(r) with ϕscr(r) = −ϕchem(r) and treat ϕinduced(r)
as a correction.

Instead of the Debye-Huckel route, one can first equilibrate ϕprobe(q) with −ϕinduced(q) =
−δn(q)VC(q).

We first totally compensate ϕprobe(q) as if the electron liquid is a classical gas at T = 0 and rscr = 0.

ϕchem(r) as a correction. The infinite series is looking as

ϕ(q)scr = 0 + ϕprobe(q)
∂µ

∂n
(q)/VC(q)− ϕprobe(r)

(
∂µ

∂n
(q)/VC(q)

)2

+ ... =

ϕprobe(r)
∂µ

∂n
(q)/[VC(q) +

∂µ

∂n
(q)]

The obtained expansion is less defected at small q, especially for ∂µ/∂n < 0 (unless the system is
unstable) and has a clear physical meaning.

Let us discuss what we will get for the total potential if we take for ∂µ
∂n(q) as a smooth analytic

function of q.

From the stability condition that there cannot be real q0 such that [VC(q0) + ∂µ
∂n(q0)] = 0.

[!!!This is in a strong contrast with what one got assuming naively that ∂µ
∂n(q) = const < 0 and

that lead to the pathological result V screen
C (r) = e

r cos(r/rscr).!!!]

A pole is located in the complex plane somewhere in a general point not related to the value of
π(q = 0).

When converted into the coordinate space (under assumption that ∂n
∂µ(q) is analytic ), ϕ(q)scr pro-

duces an exponential decaying potential. Indeed, with oscillations, but still exponentially decaying.

Conclusion: the negative (chemical) compressibility does not create big troubles in a system with
itinerant charges till the latter is far from the boundary of stability [VC(q) + ∂µ

∂n(q)] > 0.

G. Other oscillations and screening in 2D

In order to find the far-tail of the screening cloud δn(r), one has to calculate the Fourier transform
of δn(q) = −ϕprobe(q)/

(
∂µ
∂n(q) + VC(q)

)
.

The sharp Fermi surface leads to a non-analytical behavior in π(q) at q = 2kF .
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A general phenomenon related to a jump in the occupation numbers n(p).

The non-analyticity sitting in the polarization operator shows up, and it provides a contribution
which oscillates with the period (2kF )−1 and decays as 1/rD.

The Friedel oscillations are detected in the NMR measurements. One should not be confused:

Relation between S(q): the polarization operator π(q) is calculated in the limit ω = 0. This
correlation function is more singular.

The non-analyticity in π(q) in different dimensions:

in 3D a logarithmic singularity in the derivative at q = 2kF ;

in 2D the polarization operator has a cusp at 2kF ;

in 1D it even diverges logarithmically.

The screening in 2D.

Only electrons are confined in the layer.

For a probe charge e0, its screened potential in 2D is equal to

ϕscr(q) = 2πe0/(|q|+ 2πe2 ∂n

∂µ
(q)). (85)

Like in 3D, it can be written as

ϕscr(q) = 2πe0/(|q|+ κscr); κscr = 2πe2 ∂n

∂µ
(q → 0). (86)

Also like in 3D, the condition e2/}vF ¿ 1 implies that κscr ¿ kF .

On that point the similarity ends.

The Fourier transform leads to special functions. (It was done by F.Stern and can be found in the
encyclopedian review published in Rev. Mod. Physics. ) Obviously, there will be oscillations with
the period κscr.

An answer on a crude-picture question: ”what is in place of the exponentially decaying potential?”

The cloud is located within the plane. Therefore, it cannot screen all the multiplets of the probe
potential. Part of the electric field flows away through the third direction.

As a result the screened potential decays as 1/r3.

Why do we care about the conventual screening with its exponential decay in 3D or 1/r3 in 3D
theses tails are much weaker than those produced by the Friedel oscillations?
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The 2kF non-analyticity is a rather subtle thing.

On the contrary, the conventional screening is a very robust mechanism, and it guarantees supplying
of charge cloud to oppose the external perturbation.

H. What other charges do?

Other charges can shift from the position of equilibrium, and in this way participate in screening.

The simplified functional Eϕexternal
should be extended by the new terms:

Eϕexternal
[n(r)] ≡

∫
ϕexternal(r)n(r)dr−

∫
ϕexternal(r)N(r) + F [n(r);N(r′)], (87)

where F [n(r);N(r′)] = F [n(r)] + F [N(r′)] + Fmixed[n(r);N(r′)].

F [N(r′)] + Fmixed[n(r);N(r′)] =
1
2

∫
δN(r)δN(r′)
|r− r′| drdr′ +

1
2

∫
δN(r)K+(r− r′)δN(r′)drdr′ +(88)

−
∫

δn(r)δN(r′)
|r− r′| drdr′ + ... (89)

The term K+ includes chemistry like the covalent bonds.

One has to find the condition for equilibrium by variation with respect to δn(r) and δN(r′). Going
directly to the Fourier transform one gets a pair of equations.

ϕexternal(q) + δn(q)VC(q) + δn(q)Kel(q)− δN(q)VC(q) = 0 (90)
−ϕexternal(q) + δN(q)VC(q)− δn(q)VC(q) + K+δN(q) = 0 (91)

Substraction yields

ϕexternal(q) + [δn(q)− δN(q)]VC(q) +
1
2
[δn(q)Kel(q)−K+δN(q)] = 0 (92)

Note that [δn(q) − δN(q)] is the induced charge density of the two species, and [δn(q) −
δN(q)]VC(q) = ϕinduced(q).

Finally,

ϕscr(q) = ϕexternal(q)
(1/Kel + 1/K+)−1

VC + (1/Kel + 1/K+)−1 . (93)



26

The compressibility of the electrons and charged ions/dopants comes symmetrically in the screened
potential.

In the case of ions there are absolutely no reasons to neglect the contribution of 1/K+ in the total
compressibility. This term also participates in the stability of the system.

This is not the case for the semiconductors. The energy scales of the itinerant of electrons (typically
∼ 100K) are much smaller than the energy of the chemical bonds controlling the rigidity of the
host lattice keeping the dopants (typically ∼ 1eV ). Therefore, Kel ¿ K+ and the screening is
determined by the itinerant electrons only.

I. Remarks about non-linear screening

asymmetry of +e and −e at large rs.

fluctuations the bottom of the band created by remote donors separated by the spacer s :

1/
√
|r2|+ s2 À 2π

|q| exp(− |q| s)

Screening of this fluctuations.

J. Last remark:

When a given bias voltage is applied, it is the difference in the electrochemical potential. The
charges are forced to arrange themselves in such a way that they produce the difference in the
electrochemical potential equal to a given voltage.

Tonnes of wrong papers!
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